Anomalous diffusion in quantum Brownian motion with colored noise

被引:26
|
作者
Ford, GW [1 ]
O'Connell, RF
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 03期
关键词
D O I
10.1103/PhysRevA.73.032103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Anomalous diffusion is discussed in the context of quantum Brownian motion with colored noise. It is shown that earlier results follow simply and directly from the fluctuation-dissipation theorem. The limits on the long-time dependence of anomalous diffusion are shown to be a consequence of the second law of thermodynamics. The special case of an electron interacting with the radiation field is discussed in detail. We apply our results to wave-packet spreading.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Generalized diffusion of quantum Brownian motion
    Colmenares, Pedro J.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [2] ANOMALOUS DIFFUSION - THE THINNING PROPERTY OF FRACTIONAL BROWNIAN MOTION
    Sikora, Grzegorz
    ACTA PHYSICA POLONICA B, 2012, 43 (05): : 1157 - 1167
  • [3] Modeling Anomalous Diffusion by a Subordinated Integrated Brownian Motion
    Shi, Long
    Xiao, Aiguo
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [4] Anomalous diffusion as modeled by a nonstationary extension of Brownian motion
    Cushman, John H.
    O'Malley, Daniel
    Park, Moongyu
    PHYSICAL REVIEW E, 2009, 79 (03):
  • [5] Anomalous diffusion: fractional Brownian motion vs fractional Ito motion
    Eliazar, Iddo
    Kachman, Tal
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (11)
  • [6] QUANTUM BROWNIAN-MOTION IN A GENERAL ENVIRONMENT - EXACT MASTER EQUATION WITH NONLOCAL DISSIPATION AND COLORED NOISE
    HU, BL
    PAZ, JP
    ZHANG, YH
    PHYSICAL REVIEW D, 1992, 45 (08): : 2843 - 2861
  • [7] Noise perturbations in the Brownian motion and quantum dynamics
    Garbaczewski, Piotr
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 257 (1-2): : 31 - 36
  • [8] Noise perturbations in the Brownian motion and quantum dynamics
    Garbaczewski, P
    PHYSICS LETTERS A, 1999, 257 (1-2) : 31 - 36
  • [9] Quantum Brownian motion with inhomogeneous damping and diffusion
    Massignan, Pietro
    Lampo, Aniello
    Wehr, Jan
    Lewenstein, Maciej
    PHYSICAL REVIEW A, 2015, 91 (03)
  • [10] QUANTUM BROWNIAN-MOTION AND CLASSICAL DIFFUSION
    TSEKOV, R
    VAYSSILOV, GN
    CHEMICAL PHYSICS LETTERS, 1992, 195 (04) : 423 - 426