NODAL GEOMETRY, HEAT DIFFUSION AND BROWNIAN MOTION

被引:14
|
作者
Georgiev, Bogdan [1 ]
Mukherjee, Mayukh [1 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
来源
ANALYSIS & PDE | 2018年 / 11卷 / 01期
关键词
Laplace eigenfunctions; nodal domains; Brownian motion; INNER RADIUS; EIGENVALUE; EIGENFUNCTIONS; MANIFOLDS; DOMAINS; SETS;
D O I
10.2140/apde.2018.11.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use tools from n-dimensional Brownian motion in conjunction with the Feynman-Kac formulation of heat diffusion to study nodal geometry on a compact Riemannian manifold M. On one hand we extend a theorem of Lieb (1983) and prove that any Laplace nodal domain Omega(lambda) subset of M almost fully contains a ball of radius similar to 1/root lambda(1)(Omega(lambda)) and such a ball can be centred at any point of maximum of the Dirichlet ground state phi(lambda 1)(Omega(lambda))This also gives a slight refinement of a result by Mangoubi (2008) concerning the inradius of nodal domains. On the other hand, we also prove that no nodal domain can be contained in a reasonably narrow tubular neighbourhood of unions of finitely many submanifolds inside M.
引用
下载
收藏
页码:133 / 148
页数:16
相关论文
共 50 条
  • [31] Brownian motion and the general diffusion: Scale & clock
    McKean, HP
    MATHEMATICAL FINANCE - BACHELIER CONGRESS 2000, 2002, : 75 - 83
  • [32] Skew Brownian motion: A model for diffusion with interfaces?
    Cantrell, RS
    Cosner, C
    MATHEMATICAL MODELS IN MEDICAL AND HEALTH SCIENCE, 1998, : 73 - 78
  • [33] BROWNIAN DIFFUSION OF PARTICLES AND EQUATIONS OF MOTION OF DISPERSIONS
    BUEVICH, YA
    ZUBAREV, AY
    COLLOID JOURNAL OF THE USSR, 1989, 51 (06): : 915 - 921
  • [34] Hindered Brownian diffusion in a square-shaped geometry
    Gentile, Francesco S.
    De Santo, Ilaria
    D'Avino, Gaetano
    Rossi, Lucio
    Romeo, Giovanni
    Greco, Francesco
    Netti, Paolo A.
    Maffettone, Pier Luca
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 447 : 25 - 32
  • [35] A FAST NODAL NEUTRON DIFFUSION METHOD FOR CARTESIAN GEOMETRY
    MAKAI, M
    MAEDER, C
    NUCLEAR SCIENCE AND ENGINEERING, 1983, 84 (04) : 390 - 395
  • [36] Extension of nodal diffusion solver of Ants to hexagonal geometry
    Rintala, A.
    Sahlberg, V.
    KERNTECHNIK, 2019, 84 (04) : 252 - 261
  • [37] Heat flow, Brownian motion and Newtonian capacity
    van den Berg, M.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (02): : 193 - 214
  • [38] The heat semigroup and Brownian motion on strip complexes
    Bendikov, Alexander
    Saloff-Coste, Laurent
    Salvatori, Maura
    Woess, Wolfgang
    ADVANCES IN MATHEMATICS, 2011, 226 (01) : 992 - 1055
  • [39] The effect of heat flow on the Brownian motion.
    Sato, Mizuho
    ZEITSCHRIFT FUR PHYSIK, 1933, 80 (11-12): : 822 - 826
  • [40] The effect of heat flow on the Brownian motion.
    Sato, Mizuho
    ZEITSCHRIFT FUR PHYSIK, 1933, 85 (5-6): : 403 - 408