Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation

被引:82
|
作者
Kuo, Frances Y. [1 ]
Nuyens, Dirk [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Leuven, Belgium
基金
澳大利亚研究理事会;
关键词
Quasi-Monte Carlo methods; Infinite-dimensional integration; Partial differential equations with random coefficients; Uniform; Lognormal; Single-level; Multi-level; First order; Higher order; Deterministic; Randomized; PARTIAL-DIFFERENTIAL-EQUATIONS; BY-COMPONENT CONSTRUCTION; STOCHASTIC COLLOCATION METHOD; PETROV-GALERKIN DISCRETIZATION; HIGH-DIMENSIONAL INTEGRATION; POLYNOMIAL LATTICE RULES; FINITE-ELEMENT METHODS; MULTIVARIATE INTEGRATION; CONSERVATIVE TRANSPORT; FLOW;
D O I
10.1007/s10208-016-9329-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article provides a survey of recent research efforts on the application of quasi-Monte Carlo (QMC) methods to elliptic partial differential equations (PDEs) with random diffusion coefficients. It considers and contrasts the uniform case versus the lognormal case, single-level algorithms versus multi-level algorithms, first-order QMC rules versus higher-order QMC rules, and deterministic QMC methods versus randomized QMC methods. It gives a summary of the error analysis and proof techniques in a unified view, and provides a practical guide to the software for constructing and generating QMC points tailored to the PDE problems. The analysis for the uniform case can be generalized to cover a range of affine parametric operator equations.
引用
收藏
页码:1631 / 1696
页数:66
相关论文
共 50 条
  • [31] Quasi-Monte Carlo methods for simulation
    L'Ecuyer, P
    PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2003, : 81 - 89
  • [32] Quasi-Monte Carlo methods in finance
    L'Ecuyer, P
    PROCEEDINGS OF THE 2004 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2004, : 1645 - 1655
  • [33] MATHEMATICAL BASIS OF MONTE CARLO AND QUASI-MONTE CARLO METHODS
    ZAREMBA, SK
    SIAM REVIEW, 1968, 10 (03) : 303 - &
  • [34] Monte Carlo and quasi-Monte Carlo methods for computer graphics
    Shirley, Peter
    Edwards, Dave
    Boulos, Solomon
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2006, 2008, : 167 - 177
  • [35] Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems
    Scheichl, R.
    Stuart, A. M.
    Teckentrup, A. L.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 493 - 518
  • [36] Quasi-Monte Carlo Graph Random Features
    Reid, Isaac
    Choromanski, Krzysztof
    Weller, Adrian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [37] Adaptive random search in quasi-Monte Carlo methods for global optimization
    Lei, GY
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (6-7) : 747 - 754
  • [38] On the Parallel Implementation of Quasi-Monte Carlo Algorithms
    Atanassov, E.
    Gurov, T.
    Ivanovska, S.
    Karaivanova, A.
    Simchev, T.
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 258 - 265
  • [39] A quasi-Monte Carlo implementation of the ziggurat method
    Nguyen, Nguyet
    Xu, Linlin
    Okten, Giray
    MONTE CARLO METHODS AND APPLICATIONS, 2018, 24 (02): : 93 - 99
  • [40] Analyticity of parametric elliptic eigenvalue problems and applications to quasi-Monte Carlo methods
    Van Kien Nguyen
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (01) : 1 - 21