Quasi-Monte Carlo Graph Random Features

被引:0
|
作者
Reid, Isaac [1 ]
Choromanski, Krzysztof [2 ]
Weller, Adrian [3 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Columbia Univ, Google Deepmind, New York, NY USA
[3] Univ Cambridge, Alan Turing Inst, Cambridge, England
关键词
KERNEL METHODS; DIMENSIONALITY REDUCTION; COMMUNITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel mechanism to improve the accuracy of the recently-introduced class of graph random features (GRFs) [Choromanski, 2023]. Our method induces negative correlations between the lengths of the algorithm's random walks by imposing antithetic termination: a procedure to sample more diverse random walks which may be of independent interest. It has a trivial drop-in implementation. We derive strong theoretical guarantees on the properties of these quasi-Monte Carlo GRFs (q-GRFs), proving that they yield lower-variance estimators of the 2-regularised Laplacian kernel under mild conditions. Remarkably, our results hold for any graph topology. We demonstrate empirical accuracy improvements on a variety of tasks including a new practical application: time-efficient approximation of the graph diffusion process. To our knowledge, q-GRFs constitute the first rigorously studied quasi-Monte Carlo scheme for kernels defined on combinatorial objects, inviting new research on correlations between graph random walks.(1)
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [2] Random cubatures and quasi-Monte Carlo methods
    Antonov, Anton A.
    Ermakov, Sergej M.
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2015, 21 (03): : 179 - 187
  • [3] Monte Carlo and Quasi-Monte Carlo for Statistics
    Owen, Art B.
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 3 - 18
  • [4] Monte Carlo extension of quasi-Monte Carlo
    Owen, AB
    [J]. 1998 WINTER SIMULATION CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 571 - 577
  • [5] QUASI-MONTE CARLO INTEGRATION
    MOROKOFF, WJ
    CAFLISCH, RE
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (02) : 218 - 230
  • [6] Population Quasi-Monte Carlo
    Huang, Chaofan
    Joseph, V. Roshan
    Mak, Simon
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (03) : 695 - 708
  • [7] Quasi-Monte Carlo Software
    Choi, Sou-Cheng T.
    Hickernell, Fred J.
    Jagadeeswaran, Rathinavel
    McCourt, Michael J.
    Sorokin, Aleksei G.
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2020, 2022, 387 : 23 - 47
  • [8] QUASI-MONTE CARLO METHODS AND PSEUDO-RANDOM NUMBERS
    NIEDERREITER, H
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) : 957 - 1041
  • [9] Langevin Quasi-Monte Carlo
    Liu, Sifan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [10] Efficient Quasi-Monte Carlo Sampling for Quantum Random Walks
    Atanassov, E.
    Durchova, M.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302