Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation

被引:82
|
作者
Kuo, Frances Y. [1 ]
Nuyens, Dirk [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Leuven, Belgium
基金
澳大利亚研究理事会;
关键词
Quasi-Monte Carlo methods; Infinite-dimensional integration; Partial differential equations with random coefficients; Uniform; Lognormal; Single-level; Multi-level; First order; Higher order; Deterministic; Randomized; PARTIAL-DIFFERENTIAL-EQUATIONS; BY-COMPONENT CONSTRUCTION; STOCHASTIC COLLOCATION METHOD; PETROV-GALERKIN DISCRETIZATION; HIGH-DIMENSIONAL INTEGRATION; POLYNOMIAL LATTICE RULES; FINITE-ELEMENT METHODS; MULTIVARIATE INTEGRATION; CONSERVATIVE TRANSPORT; FLOW;
D O I
10.1007/s10208-016-9329-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article provides a survey of recent research efforts on the application of quasi-Monte Carlo (QMC) methods to elliptic partial differential equations (PDEs) with random diffusion coefficients. It considers and contrasts the uniform case versus the lognormal case, single-level algorithms versus multi-level algorithms, first-order QMC rules versus higher-order QMC rules, and deterministic QMC methods versus randomized QMC methods. It gives a summary of the error analysis and proof techniques in a unified view, and provides a practical guide to the software for constructing and generating QMC points tailored to the PDE problems. The analysis for the uniform case can be generalized to cover a range of affine parametric operator equations.
引用
收藏
页码:1631 / 1696
页数:66
相关论文
共 50 条
  • [21] Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients
    Ali, Ahmad Ahmad
    Ullmann, Elisabeth
    Hinze, Michael
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 466 - 492
  • [22] Quasi Continuous Level Monte Carlo for Random Elliptic PDEs
    Beschle, Cedric Aaron
    Barth, Andrea
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022, 2024, 460 : 3 - 31
  • [23] MULTILEVEL QUASI MONTE CARLO METHODS FOR ELLIPTIC PDEs WITH RANDOM FIELD COEFFICIENTS VIA FAST WHITE NOISE SAMPLING
    Croci, Matteo
    Giles, Michael
    Farrell, Patrick E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (04): : A2840 - A2868
  • [24] Parallel Multilevel Monte Carlo Algorithms for Elliptic PDEs with Random Coefficients
    Zakharov, Petr
    Iliev, Oleg
    Mohring, Jan
    Shegunov, Nikolay
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 463 - 472
  • [25] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13
  • [26] QUASI-MONTE CARLO METHODS AND PSEUDO-RANDOM NUMBERS
    NIEDERREITER, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) : 957 - 1041
  • [27] MULTILEVEL QUASI-MONTE CARLO METHODS FOR LOGNORMAL DIFFUSION PROBLEMS
    Kuo, Frances Y.
    Scheichl, Robert
    Schwab, Christoph
    Sloan, Ian H.
    Ullmann, Elisabeth
    MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2827 - 2860
  • [28] Quasi-Monte Carlo simulation of diffusion
    Lécot, C
    El Khettabi, F
    JOURNAL OF COMPLEXITY, 1999, 15 (03) : 342 - 359
  • [29] A Multiscale Multilevel Monte Carlo Method for Multiscale Elliptic PDEs with Random Coefficients
    Junlong Lyu
    Zhiwen Zhang
    CommunicationsinMathematicalResearch, 2020, 36 (02) : 154 - 192
  • [30] Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: regularity and error analysis
    Gilbert, Alexander D.
    Scheichl, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (01) : 466 - 503