Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: regularity and error analysis

被引:6
|
作者
Gilbert, Alexander D. [1 ]
Scheichl, Robert [2 ,3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Heidelberg Univ, Inst Appl Math & Interdisciplinary Ctr Sci Comp, D-69120 Heidelberg, Germany
[3] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
关键词
stochastic eigenvalue problems; quasi-Monte Carlo; uncertainty quantification; multilevel Monte Carlo; PARTIAL-DIFFERENTIAL-EQUATIONS; PETROV-GALERKIN DISCRETIZATION; BY-COMPONENT CONSTRUCTION; RANK-1 LATTICE RULES; APPROXIMATION; EFFICIENT; ALGORITHMS;
D O I
10.1093/imanum/drad011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stochastic partial differential equation (PDE) eigenvalue problems are useful models for quantifying the uncertainty in several applications from the physical sciences and engineering, e.g., structural vibration analysis, the criticality of a nuclear reactor or photonic crystal structures. In this paper we present a multilevel quasi-Monte Carlo (MLQMC) method for approximating the expectation of the minimal eigenvalue of an elliptic eigenvalue problem with coefficients that are given as a series expansion of countably-many stochastic parameters. The MLQMC algorithm is based on a hierarchy of discretizations of the spatial domain and truncations of the dimension of the stochastic parameter domain. To approximate the expectations, randomly shifted lattice rules are employed. This paper is primarily dedicated to giving a rigorous analysis of the error of this algorithm. A key step in the error analysis requires bounds on the mixed derivatives of the eigenfunction with respect to both the stochastic and spatial variables simultaneously. Under stronger smoothness assumptions on the parametric dependence, our analysis also extends to multilevel higher-order quasi-Monte Carlo rules. An accompanying paper (Gilbert, A. D. & Scheichl, R. (2023) Multilevel quasi-Monte Carlo methods for random elliptic eigenvalue problems II: efficient algorithms and numerical results. IMA J. Numer. Anal.) focusses on practical extensions of the MLQMC algorithm to improve efficiency and presents numerical results.
引用
收藏
页码:466 / 503
页数:38
相关论文
共 50 条
  • [1] Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems II: efficient algorithms and numerical results
    Gilbert, Alexander D.
    Scheichl, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (01) : 504 - 535
  • [2] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    A. D. Gilbert
    I. G. Graham
    F. Y. Kuo
    R. Scheichl
    I. H. Sloan
    Numerische Mathematik, 2019, 142 : 863 - 915
  • [3] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    Gilbert, A. D.
    Graham, I. G.
    Kuo, F. Y.
    Scheichl, R.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2019, 142 (04) : 863 - 915
  • [4] Analyticity of parametric elliptic eigenvalue problems and applications to quasi-Monte Carlo methods
    Van Kien Nguyen
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (01) : 1 - 21
  • [5] Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems
    Scheichl, R.
    Stuart, A. M.
    Teckentrup, A. L.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 493 - 518
  • [6] MULTILEVEL QUASI-MONTE CARLO FOR INTERVAL ANALYSIS
    Callens, Robin R. P.
    Faes, Matthias G. R.
    Moens, David
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2022, 12 (04) : 1 - 19
  • [7] Error in Monte Carlo, quasi-error in Quasi-Monte Carlo
    Kleiss, Ronald
    Lazopoulos, Achilleas
    COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (02) : 93 - 115
  • [8] MULTILEVEL QUASI-MONTE CARLO METHODS FOR LOGNORMAL DIFFUSION PROBLEMS
    Kuo, Frances Y.
    Scheichl, Robert
    Schwab, Christoph
    Sloan, Ian H.
    Ullmann, Elisabeth
    MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2827 - 2860
  • [9] Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications
    Graham, I. G.
    Kuo, F. Y.
    Nuyens, D.
    Scheichl, R.
    Sloan, I. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3668 - 3694
  • [10] Error estimates in Monte Carlo and Quasi-Monte Carlo integration
    Lazopouls, A
    ACTA PHYSICA POLONICA B, 2004, 35 (11): : 2617 - 2632