Absence of Lavrentiev gap for non-autonomous functionals with (p, q)-growth

被引:26
|
作者
Esposito, Antonio [1 ]
Leonetti, Francesco [1 ]
Petricca, Pier Vincenzo [1 ]
机构
[1] Univ Aquila, DIS, Via Vetoio Snc, I-67100 Laquila, Italy
关键词
Variational integrals; non-standard growth; regularity; Lavrentiev gap; MINIMIZERS; REGULARITY; INTEGRALS;
D O I
10.1515/anona-2016-0198
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-autonomous functionals of the form F(u, Omega) =integral(Omega) f(x, Du(x))dx, where u : Omega -> R-N, Omega subset of R-n. We assume that f(x, z) grows at least as vertical bar z vertical bar(p) and at most as vertical bar z vertical bar(q). Moreover, f(x, z) is Holder continuous with respect to x and convex with respect to z. In this setting, we give a sufficient condition on the density f(x, z) that ensures the absence of a Lavrentiev gap.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 50 条
  • [1] Avoidance of the Lavrentiev gap for one-dimensional non-autonomous functionals with constraints
    Mariconda, Carlo
    ADVANCES IN CALCULUS OF VARIATIONS, 2025, 18 (01) : 219 - 254
  • [2] Absence of Lavrentiev's gap for anisotropic functionals
    Borowski, Michal
    Chlebicka, Iwona
    Miasojedow, Blazej
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 246
  • [3] Non-autonomous (p, q)-equations with unbalanced growth
    Papageorgiou, Nikolaos S.
    Pudelko, Anna
    Radulescu, Vicentiu D.
    MATHEMATISCHE ANNALEN, 2023, 385 (3-4) : 1707 - 1745
  • [4] Non-autonomous (p, q)-equations with unbalanced growth
    Nikolaos S. Papageorgiou
    Anna Pudełko
    Vicenţiu D. Rădulescu
    Mathematische Annalen, 2023, 385 : 1707 - 1745
  • [5] Regularity for non-autonomous functionals with almost linear growth
    Dominic Breit
    Bruno De Maria
    Antonia Passarelli di Napoli
    Manuscripta Mathematica, 2011, 136 : 83 - 114
  • [6] Regularity for non-autonomous functionals with almost linear growth
    Breit, Dominic
    De Maria, Bruno
    di Napoli, Antonia Passarelli
    MANUSCRIPTA MATHEMATICA, 2011, 136 (1-2) : 83 - 114
  • [7] Non-occurrence of gap for one-dimensional non-autonomous functionals
    Mariconda, Carlo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (02)
  • [8] Non-occurrence of gap for one-dimensional non-autonomous functionals
    Carlo Mariconda
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [9] Nonoccurrence of Lavrentiev gap for a class of functionals with nonstandard growth
    De Filippis, Filomena
    Leonetti, Francesco
    Treu, Giulia
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [10] Non occurrence of the Lavrentiev gap for a class of nonautonomous functionals
    Bousquet, Pierre
    Mariconda, Carlo
    Treu, Giulia
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (05) : 2275 - 2317