A time-reversal invariant topological phase at the surface of a 3D topological insulator

被引:132
|
作者
Bonderson, Parsa [1 ]
Nayak, Chetan [1 ,2 ]
Qi, Xiao-Liang [1 ,3 ]
机构
[1] Microsoft Res, Stn Q, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
fractional states (theory); fractional QHE (theory); quantum fluids; GAUGE-INVARIANCE; HALL;
D O I
10.1088/1742-5468/2013/09/P09016
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p(x)+ip(y) superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases.
引用
下载
收藏
页数:33
相关论文
共 50 条
  • [1] Topological phases in a three-dimensional topological insulator with a time-reversal invariant external field
    Guo, Xiaoyong
    Ren, Xiaobin
    Wang, Gangzhi
    Peng, Jie
    PHYSICA SCRIPTA, 2014, 89 (10)
  • [2] Time-reversal invariant topological skyrmion phases
    Flores-Calderon, R.
    Cook, Ashley M.
    PHYSICAL REVIEW B, 2023, 108 (23)
  • [3] Time-reversal invariant resonant backscattering on a topological insulator surface driven by a time-periodic gate voltage
    Ming-Xun Deng
    R. Ma
    Wei Luo
    R. Shen
    L. Sheng
    D. Y. Xing
    Scientific Reports, 8
  • [4] Time-reversal invariant resonant backscattering on a topological insulator surface driven by a time-periodic gate voltage
    Deng, Ming-Xun
    Ma, R.
    Luo, Wei
    Shen, R.
    Sheng, L.
    Xing, D. Y.
    SCIENTIFIC REPORTS, 2018, 8
  • [5] Fermionic time-reversal symmetry in a photonic topological insulator
    Maczewsky, Lukas J.
    Hoeckendorf, Bastian
    Kremer, Mark
    Biesenthal, Tobias
    Heinrich, Matthias
    Alvermann, Andreas
    Fehske, Holger
    Szameit, Alexander
    NATURE MATERIALS, 2020, 19 (08) : 855 - +
  • [6] Photonic topological insulator with broken time-reversal symmetry
    He, Cheng
    Sun, Xiao-Chen
    Liu, Xiao-Ping
    Lu, Ming-Hui
    Chen, Yulin
    Feng, Liang
    Chen, Yan-Feng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (18) : 4924 - 4928
  • [7] Fermionic time-reversal symmetry in a photonic topological insulator
    Lukas J. Maczewsky
    Bastian Höckendorf
    Mark Kremer
    Tobias Biesenthal
    Matthias Heinrich
    Andreas Alvermann
    Holger Fehske
    Alexander Szameit
    Nature Materials, 2020, 19 : 855 - 860
  • [8] Topological field theory of time-reversal invariant insulators
    Qi, Xiao-Liang
    Hughes, Taylor L.
    Zhang, Shou-Cheng
    PHYSICAL REVIEW B, 2008, 78 (19)
  • [9] Realistic Time-Reversal Invariant Topological Insulators with Neutral Atoms
    Goldman, N.
    Satija, I.
    Nikolic, P.
    Bermudez, A.
    Martin-Delgado, M. A.
    Lewenstein, M.
    Spielman, I. B.
    PHYSICAL REVIEW LETTERS, 2010, 105 (25)
  • [10] Time-reversal invariant topological superconductivity in planar Josephson bijunction
    Volpez, Yanick
    Loss, Daniel
    Klinovaja, Jelena
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):