A time-reversal invariant topological phase at the surface of a 3D topological insulator

被引:132
|
作者
Bonderson, Parsa [1 ]
Nayak, Chetan [1 ,2 ]
Qi, Xiao-Liang [1 ,3 ]
机构
[1] Microsoft Res, Stn Q, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
fractional states (theory); fractional QHE (theory); quantum fluids; GAUGE-INVARIANCE; HALL;
D O I
10.1088/1742-5468/2013/09/P09016
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p(x)+ip(y) superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Electromagnetic description of three-dimensional time-reversal invariant ponderable topological insulators
    Martin-Ruiz, A.
    Cambiaso, M.
    Urrutia, L. F.
    PHYSICAL REVIEW D, 2016, 94 (08)
  • [42] Binding zero modes with fluxons in Josephson junctions of time-reversal invariant topological superconductors
    Ruiz, Gabriel F. Rodríguez
    Reich, Adrian
    Shnirman, Alexander
    Schmalian, Jörg
    Arrachea, Liliana
    Physical Review B, 2024, 110 (24)
  • [43] Collective excitonic and plasmonic excitations on a surface of 3D topological insulator
    Efimkin, D. K.
    Lozovik, Yu E.
    INTERNATIONAL CONFERENCE ON THEORETICAL PHYSICS: DUBNA-NANO 2012, 2012, 393
  • [44] Broken time-reversal symmetry in the topological superconductor UPt3
    Avers, K. E.
    Gannon, W. J.
    Kuhn, S. J.
    Halperin, W. P.
    Sauls, J. A.
    DeBeer-Schmitt, L.
    Dewhurst, C. D.
    Gavilano, J.
    Nagy, G.
    Gasser, U.
    Eskildsen, M. R.
    NATURE PHYSICS, 2020, 16 (05) : 531 - +
  • [45] Broken time-reversal symmetry in the topological superconductor UPt3
    K. E. Avers
    W. J. Gannon
    S. J. Kuhn
    W. P. Halperin
    J. A. Sauls
    L. DeBeer-Schmitt
    C. D. Dewhurst
    J. Gavilano
    G. Nagy
    U. Gasser
    M. R. Eskildsen
    Nature Physics, 2020, 16 : 531 - 535
  • [46] Topological invariants for the Fermi surface of a time-reversal-invariant superconductor
    Qi, Xiao-Liang
    Hughes, Taylor L.
    Zhang, Shou-Cheng
    PHYSICAL REVIEW B, 2010, 81 (13):
  • [47] Anomaly Indicators for Time-Reversal Symmetric Topological Orders
    Wang, Chenjie
    Levin, Michael
    PHYSICAL REVIEW LETTERS, 2017, 119 (13)
  • [48] Classification of Topological Insulators with Time-Reversal and Inversion Symmetry
    刘兰峰
    陈伯仑
    寇谡鹏
    Communications in Theoretical Physics, 2011, 55 (05) : 904 - 912
  • [49] Time-reversal symmetry breaking at the edge states of a three-dimensional topological band insulator
    Xu, Cenke
    PHYSICAL REVIEW B, 2010, 81 (02)
  • [50] TOPOLOGICAL INVARIANTS IN FERMI SYSTEMS WITH TIME-REVERSAL INVARIANCE
    AVRON, JE
    SADUN, L
    SEGERT, J
    SIMON, B
    PHYSICAL REVIEW LETTERS, 1988, 61 (12) : 1329 - 1332