A time-reversal invariant topological phase at the surface of a 3D topological insulator

被引:132
|
作者
Bonderson, Parsa [1 ]
Nayak, Chetan [1 ,2 ]
Qi, Xiao-Liang [1 ,3 ]
机构
[1] Microsoft Res, Stn Q, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
fractional states (theory); fractional QHE (theory); quantum fluids; GAUGE-INVARIANCE; HALL;
D O I
10.1088/1742-5468/2013/09/P09016
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A 3D fermionic topological insulator has a gapless Dirac surface state protected by time-reversal symmetry and charge conservation symmetry. The surface state can be gapped by introducing ferromagnetism to break time-reversal symmetry, introducing superconductivity to break charge conservation, or entering a topological phase. In this paper, we construct a minimal gapped topological phase that preserves both time-reversal and charge conservation symmetries and supports Ising-type non-Abelian anyons. This phase can be understood heuristically as emerging from a surface s-wave superconducting state via the condensation of eight-vortex composites. The topological phase inherits vortices supporting Majorana zero modes from the surface superconducting state. However, since it is time-reversal invariant, the surface topological phase is a distinct phase from the Ising topological phase, which can be viewed as a quantum-disordered spin-polarized p(x)+ip(y) superconductor. We discuss the anyon model of this topological phase and the manner in which time-reversal symmetry is realized in it. We also study the interfaces between the topological state and other surface gapped phases.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Topological phases of strongly interacting time-reversal invariant topological superconducting chains under a magnetic field
    Chinellato, Leandro M.
    Gazza, Claudio J.
    Lobos, Alejandro M.
    Aligia, Armando A.
    PHYSICAL REVIEW B, 2024, 109 (06)
  • [22] Time-reversal symmetric topological metal
    Xie, L. C.
    Wu, H. C.
    Jin, L.
    Song, Z.
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [23] Proposed detection of time-reversal symmetry in topological surface states
    Zhang, Degang
    Ting, C. S.
    PHYSICAL REVIEW B, 2013, 88 (08):
  • [24] Nickel: The time-reversal symmetry conserving partner of iron on a chalcogenide topological insulator
    Vondracek, M.
    Cornils, L.
    Minar, J.
    Warmuth, J.
    Michiardi, M.
    Piamonteze, C.
    Barreto, L.
    Miwa, J. A.
    Bianchi, M.
    Hofmann, Ph.
    Zhou, L.
    Kamlapure, A.
    Khajetoorians, A. A.
    Wiesendanger, R.
    Mi, J. -L.
    Iversen, B. -B.
    Mankovsky, S.
    Borek, St.
    Ebert, H.
    Schueler, M.
    Wehling, T.
    Wiebe, J.
    Honolka, J.
    PHYSICAL REVIEW B, 2016, 94 (16)
  • [25] Measuring the spin polarization of a ferromagnet: An application of time-reversal invariant topological superconductor
    Yan, Zhongbo
    Wan, Shaolong
    EPL, 2015, 111 (04)
  • [26] Tunneling magnetoresistance in junctions composed of ferromagnets and time-reversal invariant topological superconductors
    Yan, Zhongbo
    Wan, Shaolong
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [27] Time-Reversal Invariant Topological Superconductivity in Quasi-One-Dimensional Structures
    Mammadova, S.
    Nakhmedov, E.
    Alekperov, O.
    ACTA PHYSICA POLONICA A, 2016, 129 (04) : 800 - 802
  • [28] Majorana Modes in Time-Reversal Invariant s-Wave Topological Superconductors
    Deng, Shusa
    Viola, Lorenza
    Ortiz, Gerardo
    PHYSICAL REVIEW LETTERS, 2012, 108 (03)
  • [29] Proxy ensemble geometric phase and proxy index of time-reversal invariant topological insulators at finite temperatures
    Pi, Aixin
    Zhang, Ye
    He, Yan
    Chien, Chih-Chun
    PHYSICAL REVIEW B, 2022, 105 (08)
  • [30] Time-reversal breaking and spin transport induced by magnetic impurities in a 2D topological insulator
    Derakhshan, V.
    Ketabi, S. A.
    Moghaddam, A. G.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (35)