Photonic topological insulator with broken time-reversal symmetry

被引:212
|
作者
He, Cheng [1 ,2 ]
Sun, Xiao-Chen [1 ,2 ]
Liu, Xiao-Ping [1 ,2 ,3 ]
Lu, Ming-Hui [1 ,2 ,3 ]
Chen, Yulin [4 ]
Feng, Liang [5 ]
Chen, Yan-Feng [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[4] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[5] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
关键词
photonic topological insulator; piezoelectric/piezomagnetic superlattice; photonic crystal; polariton; time-reversal symmetry; SINGLE DIRAC CONE; EDGE STATES;
D O I
10.1073/pnas.1525502113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron's spin-1/2 (fermionic) time-reversal symmetry T-f(2) = -1. However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon's spin-1 (bosonic) time-reversal symmetry T-b(2) = 1. In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, T-p (T-p(2) = -1), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry T-p rather than by the bosonic time-reversal symmetry T-b. This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators.
引用
收藏
页码:4924 / 4928
页数:5
相关论文
共 50 条
  • [1] Fermionic time-reversal symmetry in a photonic topological insulator
    Maczewsky, Lukas J.
    Hoeckendorf, Bastian
    Kremer, Mark
    Biesenthal, Tobias
    Heinrich, Matthias
    Alvermann, Andreas
    Fehske, Holger
    Szameit, Alexander
    NATURE MATERIALS, 2020, 19 (08) : 855 - +
  • [2] Fermionic time-reversal symmetry in a photonic topological insulator
    Lukas J. Maczewsky
    Bastian Höckendorf
    Mark Kremer
    Tobias Biesenthal
    Matthias Heinrich
    Andreas Alvermann
    Holger Fehske
    Alexander Szameit
    Nature Materials, 2020, 19 : 855 - 860
  • [3] Direct Observation of Broken Time-Reversal Symmetry on the Surface of a Magnetically Doped Topological Insulator
    Okada, Yoshinori
    Dhital, Chetan
    Zhou, Wenwen
    Huemiller, Erik D.
    Lin, Hsin
    Basak, S.
    Bansil, A.
    Huang, Y. -B.
    Ding, H.
    Wang, Z.
    Wilson, Stephen D.
    Madhavan, V.
    PHYSICAL REVIEW LETTERS, 2011, 106 (20)
  • [4] Broken time-reversal symmetry in the topological superconductor UPt3
    Avers, K. E.
    Gannon, W. J.
    Kuhn, S. J.
    Halperin, W. P.
    Sauls, J. A.
    DeBeer-Schmitt, L.
    Dewhurst, C. D.
    Gavilano, J.
    Nagy, G.
    Gasser, U.
    Eskildsen, M. R.
    NATURE PHYSICS, 2020, 16 (05) : 531 - +
  • [5] Fractional Topological Phases and Broken Time-Reversal Symmetry in Strained Graphene
    Ghaemi, Pouyan
    Cayssol, Jerome
    Sheng, D. N.
    Vishwanath, Ashvin
    PHYSICAL REVIEW LETTERS, 2012, 108 (26)
  • [6] Broken time-reversal symmetry in the topological superconductor UPt3
    K. E. Avers
    W. J. Gannon
    S. J. Kuhn
    W. P. Halperin
    J. A. Sauls
    L. DeBeer-Schmitt
    C. D. Dewhurst
    J. Gavilano
    G. Nagy
    U. Gasser
    M. R. Eskildsen
    Nature Physics, 2020, 16 : 531 - 535
  • [7] Thermopower with broken time-reversal symmetry
    Saito, Keiji
    Benenti, Giuliano
    Casati, Giulio
    Prosen, Tomaz
    PHYSICAL REVIEW B, 2011, 84 (20):
  • [8] Superconductivity with broken time-reversal symmetry
    Sigrist, M
    PHYSICA B-CONDENSED MATTER, 2000, 280 (1-4) : 154 - 158
  • [9] Nanostructures - Time-reversal symmetry broken
    Bains, S
    LASER FOCUS WORLD, 2004, 40 (02): : 24 - +
  • [10] Unveiling a crystalline topological insulator in a Weyl semimetal with time-reversal symmetry
    Arrachea, Liliana
    Aligia, Armando A.
    PHYSICAL REVIEW B, 2014, 90 (12)