Logarithmic Multiplier in Hardware Implementation of Neural Networks

被引:0
|
作者
Lotric, Uros [1 ]
Bulic, Patricio [1 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana 61000, Slovenia
关键词
Neural network; Iterative logarithmic multiplier; FPGA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural networks on chip have found some niche areas of applications, ranging from massive consumer products requiring small costs to real-time systems requiring real time response. Speaking about latter, iterative logarithmic multipliers show a great potential in increasing performance of the hardware neural networks. By relatively reducing the size of the multiplication circuit, the concurrency and consequently the speed of the model can be greatly improved. The proposed hardware implementation of the multilayer perceptron with on chip learning ability confirms the potential of the concept. The experiments performed on a PROBEN1 benchmark dataset show that the adaptive nature of the proposed neural network model enables the compensation of the errors caused by inexact calculations by simultaneously increasing its performance and reducing power consumption.
引用
收藏
页码:158 / 168
页数:11
相关论文
共 50 条
  • [31] Neural Networks for Epileptic Seizure Prediction: Algorithms and Hardware Implementation
    Gagliano, Laura
    Lesage, Frederic
    Assi, Elie Bou
    Nguyen, Dang K.
    Sawan, Mohamad
    2020 18TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS'20), 2020, : 315 - 318
  • [32] An efficient and expandable hardware implementation of multilayer cellular neural networks
    Javier Martinez, J.
    Garrigos, Javier
    Toledo, Javier
    Manuel Ferrandez, J.
    NEUROCOMPUTING, 2013, 114 : 54 - 62
  • [33] A switched-resistor approach to hardware implementation of neural networks
    Zhang, N
    Wunsch, DC
    FUZZ-IEEE 2005: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS: BIGGEST LITTLE CONFERENCE IN THE WORLD, 2005, : 336 - 340
  • [34] An Efficient Hardware Implementation of Feed-Forward Neural Networks
    Tamás Szab#x00F3;
    Gábor Horv#x00E1;th
    Applied Intelligence, 2004, 21 : 143 - 158
  • [35] A new proposal for implementation of competitive neural networks in analog hardware
    Engel, PM
    Molz, RF
    VTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, PROCEEDINGS, 1998, : 186 - 191
  • [36] Artificial neural networks processor - A hardware implementation using a FPGA
    Ferreira, P
    Ribeiro, P
    Antunes, A
    Dias, FM
    FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, PROCEEDINGS, 2004, 3203 : 1084 - 1086
  • [37] Hardware Implementation of Artificial Neural Networks for Vibroacoustic Signals Classification
    Dabrowski, D.
    Jamro, E.
    Cioch, W.
    ACTA PHYSICA POLONICA A, 2010, 118 (01) : 41 - 44
  • [38] Hardware implementation of memristor-based artificial neural networks
    Aguirre, Fernando
    Sebastian, Abu
    Le Gallo, Manuel
    Song, Wenhao
    Wang, Tong
    Yang, J. Joshua
    Lu, Wei
    Chang, Meng-Fan
    Ielmini, Daniele
    Yang, Yuchao
    Mehonic, Adnan
    Kenyon, Anthony
    Villena, Marco A.
    Roldan, Juan B.
    Wu, Yuting
    Hsu, Hung-Hsi
    Raghavan, Nagarajan
    Sune, Jordi
    Miranda, Enrique
    Eltawil, Ahmed
    Setti, Gianluca
    Smagulova, Kamilya
    Salama, Khaled N.
    Krestinskaya, Olga
    Yan, Xiaobing
    Ang, Kah-Wee
    Jain, Samarth
    Li, Sifan
    Alharbi, Osamah
    Pazos, Sebastian
    Lanza, Mario
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [39] Hardware implementation of memristor-based artificial neural networks
    Fernando Aguirre
    Abu Sebastian
    Manuel Le Gallo
    Wenhao Song
    Tong Wang
    J. Joshua Yang
    Wei Lu
    Meng-Fan Chang
    Daniele Ielmini
    Yuchao Yang
    Adnan Mehonic
    Anthony Kenyon
    Marco A. Villena
    Juan B. Roldán
    Yuting Wu
    Hung-Hsi Hsu
    Nagarajan Raghavan
    Jordi Suñé
    Enrique Miranda
    Ahmed Eltawil
    Gianluca Setti
    Kamilya Smagulova
    Khaled N. Salama
    Olga Krestinskaya
    Xiaobing Yan
    Kah-Wee Ang
    Samarth Jain
    Sifan Li
    Osamah Alharbi
    Sebastian Pazos
    Mario Lanza
    Nature Communications, 15
  • [40] An efficient hardware implementation of feed-forward neural networks
    Szabó, T
    Horváth, G
    APPLIED INTELLIGENCE, 2004, 21 (02) : 143 - 158