Some Diophantine Problems Related to k-Fibonacci Numbers

被引:1
|
作者
Trojovsky, Pavel [1 ]
Hubalovsky, Stepan [2 ]
机构
[1] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
[2] Univ Hradec Kralove, Fac Sci, Dept Appl Cybernet, Hradec Kralove 50003, Czech Republic
关键词
k-Fibonacci number; k-Lucas number; Galois theory; Diophantine equation; POWERS;
D O I
10.3390/math8071047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 1 be an integer and denote (F-k,F-n) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F-k,F-n=kF(k,n-1)+F-k,F-n-2, with initial conditions F-k,F-0=0 and F-k,F-1=1. In the same way, the k-Lucas sequence (L-k,L-n)(n) is defined by satisfying the same recursive relation with initial values L-k,L-0=2 and L-k,L-1=k. The sequences(F-k,F-n)(n >= 0) and (L-k,L-n)(n >= 0) were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F-k,n(2)+F-k,n+1(2)=F-k,F-2n+1 and F-k,n+1(2)-F-k,n-1(2)=kF(k,2n), for all k >= 1 and n >= 0. In this paper, we shall prove that if k>1 and F-k,n(s)+F-k,n+1(s) is an element of(F-k,F-m)(m >= 1) for infinitely many positive integers n, then s=2. Similarly, that if F-k,n+1(s)-F-k,n-1(s) is an element of(kF(k,m))(m >= 1) holds for infinitely many positive integers n, then s=1 or s=2. This generalizes a Marques and Togbe result related to the case k=1. Furthermore, we shall solve the Diophantine equations F-k,F-n=L-k,L-m, F-k,F-n=F-n,F-k and L-k,L-n=L-n,L-k.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Applications of k-Fibonacci numbers for the starlike analytic functions
    Sokol, Janusz
    Raina, Ravinder Krishna
    Ozgur, Nihal Yilmaz
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (01): : 121 - 127
  • [42] On prime factors of the sum of two k-Fibonacci numbers
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (04) : 1171 - 1195
  • [43] On Fermat and Mersenne numbers expressible as product of two k-Fibonacci numbers
    Mohand O. Hernane
    Salah Eddine Rihane
    Safia Seffah
    Alain Togbé
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [44] Coincidence Between k-Fibonacci Numbers and Products of Two Fermat Numbers
    Alioune Gueye
    Salah Eddine Rihane
    Alain Togbé
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 541 - 552
  • [45] Almost Repdigit k-Fibonacci Numbers with an Application of k-Generalized Fibonacci Sequences
    Altassan, Alaa
    Alan, Murat
    MATHEMATICS, 2023, 11 (02)
  • [46] On Fermat and Mersenne numbers expressible as product of two k-Fibonacci numbers
    Hernane, Mohand O.
    Rihane, Salah Eddine
    Seffah, Safia
    Togbe, Alain
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (02):
  • [47] Some family of Diophantine pairs with Fibonacci numbers
    Park, Jinseo
    Lee, June Bok
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (02): : 367 - 384
  • [48] Some family of Diophantine pairs with Fibonacci numbers
    Jinseo Park
    June Bok Lee
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 367 - 384
  • [49] GENERALIZED FIBONACCI NUMBERS AND SOME DIOPHANTINE EQUATIONS
    ANTONIADIS, JA
    FIBONACCI QUARTERLY, 1985, 23 (03): : 199 - 213
  • [50] On k-Fibonacci and k-Lucas numbers written as a product of two Pell numbers
    Salah Eddine Rihane
    Boletín de la Sociedad Matemática Mexicana, 2024, 30