Some Diophantine Problems Related to k-Fibonacci Numbers

被引:1
|
作者
Trojovsky, Pavel [1 ]
Hubalovsky, Stepan [2 ]
机构
[1] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
[2] Univ Hradec Kralove, Fac Sci, Dept Appl Cybernet, Hradec Kralove 50003, Czech Republic
关键词
k-Fibonacci number; k-Lucas number; Galois theory; Diophantine equation; POWERS;
D O I
10.3390/math8071047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 1 be an integer and denote (F-k,F-n) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F-k,F-n=kF(k,n-1)+F-k,F-n-2, with initial conditions F-k,F-0=0 and F-k,F-1=1. In the same way, the k-Lucas sequence (L-k,L-n)(n) is defined by satisfying the same recursive relation with initial values L-k,L-0=2 and L-k,L-1=k. The sequences(F-k,F-n)(n >= 0) and (L-k,L-n)(n >= 0) were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F-k,n(2)+F-k,n+1(2)=F-k,F-2n+1 and F-k,n+1(2)-F-k,n-1(2)=kF(k,2n), for all k >= 1 and n >= 0. In this paper, we shall prove that if k>1 and F-k,n(s)+F-k,n+1(s) is an element of(F-k,F-m)(m >= 1) for infinitely many positive integers n, then s=2. Similarly, that if F-k,n+1(s)-F-k,n-1(s) is an element of(kF(k,m))(m >= 1) holds for infinitely many positive integers n, then s=1 or s=2. This generalizes a Marques and Togbe result related to the case k=1. Furthermore, we shall solve the Diophantine equations F-k,F-n=L-k,L-m, F-k,F-n=F-n,F-k and L-k,L-n=L-n,L-k.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] On Starlike Functions Connected with k-Fibonacci Numbers
    Ozgur, Nihal Yilmaz
    Sokol, Janusz
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (01) : 249 - 258
  • [22] An exponential equation involving k-Fibonacci numbers
    Gueye, Alioune
    Rihane, Salah Eddine
    Togbe, Alain
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (06) : 2664 - 2677
  • [23] FERMAT k-FIBONACCI AND k-LUCAS NUMBERS
    Bravo, Jhon J.
    Herrera, Jose L.
    MATHEMATICA BOHEMICA, 2020, 145 (01): : 19 - 32
  • [24] Binomial Transform of the Generalized k-Fibonacci Numbers
    Falcon, Sergio
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 643 - 651
  • [25] ON THE LARGEST PRIME FACTOR OF THE k-FIBONACCI NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1351 - 1366
  • [26] On k-Fibonacci hybrid numbers and their matrix representations
    Aydin, Fugen Torunbalci
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (04) : 257 - 266
  • [27] Catalan Identity for the k-Fibonacci Numbers Solution
    Smith, Jason L.
    FIBONACCI QUARTERLY, 2019, 57 (02): : 177 - 178
  • [28] k-FIBONACCI NUMBERS CLOSE TO A POWER OF 2
    Bravo, Jhon J.
    Gomez, Carlos A.
    Herrera, Jose L.
    QUAESTIONES MATHEMATICAE, 2021, 44 (12) : 1681 - 1690
  • [29] On k-Fibonacci Numbers with Applications to Continued Fractions
    Rabago, Julius Fergy T.
    2015 INTERNATIONAL CONFERENCE ON MATHEMATICS, ITS APPLICATIONS, AND MATHEMATICS EDUCATION (ICMAME 2015), 2016, 693
  • [30] Catalan Identity for the k-Fibonacci Numbers Proposal
    Plaza, Angel
    Falcon, Sergio
    FIBONACCI QUARTERLY, 2019, 57 (02): : 177 - 177