Some Diophantine Problems Related to k-Fibonacci Numbers

被引:1
|
作者
Trojovsky, Pavel [1 ]
Hubalovsky, Stepan [2 ]
机构
[1] Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
[2] Univ Hradec Kralove, Fac Sci, Dept Appl Cybernet, Hradec Kralove 50003, Czech Republic
关键词
k-Fibonacci number; k-Lucas number; Galois theory; Diophantine equation; POWERS;
D O I
10.3390/math8071047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 1 be an integer and denote (F-k,F-n) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F-k,F-n=kF(k,n-1)+F-k,F-n-2, with initial conditions F-k,F-0=0 and F-k,F-1=1. In the same way, the k-Lucas sequence (L-k,L-n)(n) is defined by satisfying the same recursive relation with initial values L-k,L-0=2 and L-k,L-1=k. The sequences(F-k,F-n)(n >= 0) and (L-k,L-n)(n >= 0) were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F-k,n(2)+F-k,n+1(2)=F-k,F-2n+1 and F-k,n+1(2)-F-k,n-1(2)=kF(k,2n), for all k >= 1 and n >= 0. In this paper, we shall prove that if k>1 and F-k,n(s)+F-k,n+1(s) is an element of(F-k,F-m)(m >= 1) for infinitely many positive integers n, then s=2. Similarly, that if F-k,n+1(s)-F-k,n-1(s) is an element of(kF(k,m))(m >= 1) holds for infinitely many positive integers n, then s=1 or s=2. This generalizes a Marques and Togbe result related to the case k=1. Furthermore, we shall solve the Diophantine equations F-k,F-n=L-k,L-m, F-k,F-n=F-n,F-k and L-k,L-n=L-n,L-k.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Dual-complex k-Fibonacci numbers
    Aydin, Fugen Torunbalci
    CHAOS SOLITONS & FRACTALS, 2018, 115 : 1 - 6
  • [32] CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS RELATED TO k-FIBONACCI NUMBERS
    Guney, H. Ozlem
    Murugusundaramoorthy, G.
    Sokol, J.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 1909 - 1921
  • [33] POWERS OF TWO AS SUMS OF TWO k-FIBONACCI NUMBERS
    Bravo, Jhon J.
    Gomez, Carlos A.
    Luca, Florian
    MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 85 - 100
  • [34] On Relationship Among a New Family of k-Fibonacci, k-Lucas Numbers, Fibonacci and Lucas Numbers
    Ozkan, Engin
    Altun, Ipek
    Gocer, Ali Aykut
    CHIANG MAI JOURNAL OF SCIENCE, 2017, 44 (04): : 1744 - 1750
  • [35] k-Fibonacci and k-Lucas numbers as (l, m)-antipalindromic numbers
    Brahmi, Adel
    Mokhtar, Ahmed Ait
    Rihane, Salah Eddine
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (02):
  • [36] Pillai's problem with k-Fibonacci and Pell numbers
    Bravo, Jhon J.
    Diaz, Maribel
    Gomez, Carlos A.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (10) : 1434 - 1455
  • [37] Symmetric functions of the k-Fibonacci and k-Lucas numbers
    Boussayoud, Ali
    Kerada, Mohamed
    Araci, Serkan
    Acikgoz, Mehmet
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (03)
  • [38] Coincidence Between k-Fibonacci Numbers and Products of Two Fermat Numbers
    Gueye, Alioune
    Rihane, Salah Eddine
    Togbe, Alain
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (02): : 541 - 552
  • [39] k-Fibonacci numbers and k-Lucas numbers and associated bipartite graphs
    Lee, Gwangyeon
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 884 - 893
  • [40] On the co-complex-type k-Fibonacci numbers
    Deveci, Omur
    Hulku, Sakine
    Shannon, Anthony G.
    CHAOS SOLITONS & FRACTALS, 2021, 153