Computational techniques for parameter estimation of gravitational wave signals

被引:5
|
作者
Meyer, Renate [1 ]
Edwards, Matthew C. [1 ]
Maturana-Russel, Patricio [1 ,2 ]
Christensen, Nelson [3 ]
机构
[1] Univ Auckland, Dept Stat, Auckland, New Zealand
[2] Auckland Univ Technol, Dept Math Sci, Auckland, New Zealand
[3] Univ Cote Azur, Observ Cote Azur, Artemis, Nice, France
基金
美国国家科学基金会;
关键词
Bayesian inference; Markov chain Monte Carlo; Nested Sampling; parameter estimation; signal processing; GENERAL-RELATIVITY; NEUTRINO BURST; POWER SPECTRA; RADIATION; LIGO; IDENTIFICATION; INFERENCE; BINARIES; PULSARS;
D O I
10.1002/wics.1532
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core-collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational-wave background are in the sensitivity band of the ground-based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high-dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer-intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state-of-the-art Bayesian statistical parameter estimation methods will be given for researchers in this cross-disciplinary area of gravitational wave data analysis. This article is categorized under: Applications of Computational Statistics > Signal and Image Processing and Coding Statistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo (MCMC) Statistical Models > Time Series Models
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Anatomy of parameter-estimation biases in overlapping gravitational-wave signals
    Wang, Ziming
    Liang, Dicong
    Zhao, Junjie
    Liu, Chang
    Shao, Lijing
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (05)
  • [2] Parameter estimation for space-based gravitational wave detectors with ringdown signals
    Zhang, Chunyu
    Gong, Yungui
    Zhang, Chao
    PHYSICAL REVIEW D, 2021, 104 (08)
  • [3] Simple parameter estimation using observable features of gravitational-wave signals
    Fairhurst, Stephen
    Hoy, Charlie
    Green, Rhys
    Mills, Cameron
    Usman, Samantha A.
    PHYSICAL REVIEW D, 2023, 108 (08)
  • [4] Analyses of overlapping gravitational wave signals using hierarchical subtraction and joint parameter estimation
    Janquart, Justin
    Baka, Tomasz
    Samajdar, Anuradha
    Dietrich, Tim
    Van Den Broeck, Chris
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 523 (02) : 1699 - 1710
  • [5] Bayesian bounds on parameter estimation accuracy for compact coalescing binary gravitational wave signals
    Nicholson, D
    Vecchio, A
    PHYSICAL REVIEW D, 1998, 57 (08): : 4588 - 4599
  • [6] Mass-spin reparametrization for a rapid parameter estimation of inspiral gravitational-wave signals
    Lee, Eunsub
    Morisaki, Soichiro
    Tagoshi, Hideyuki
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [7] Impacts of overlapping gravitational-wave signals on the parameter estimation: Toward the search for cosmological backgrounds
    Himemoto, Yoshiaki
    Nishizawa, Atsushi
    Taruya, Atsushi
    PHYSICAL REVIEW D, 2021, 104 (04)
  • [8] Parameter estimation and model selection of gravitational wave signals contaminated by transient detector noise glitches
    Powell, Jade
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (15)
  • [9] Gravitational wave parameter estimation with compressed likelihood evaluations
    Canizares, Priscilla
    Field, Scott E.
    Gair, Jonathan R.
    Tiglio, Manuel
    PHYSICAL REVIEW D, 2013, 87 (12):
  • [10] Stealth bias in gravitational-wave parameter estimation
    Vallisneri, Michele
    Yunes, Nicolas
    PHYSICAL REVIEW D, 2013, 87 (10):