Exploring Visual and Motion Saliency for Automatic Video Object Extraction

被引:41
|
作者
Li, Wei-Te [1 ,2 ]
Chang, Haw-Shiuan [3 ]
Lien, Kuo-Chin [4 ]
Chang, Hui-Tang [5 ]
Wang, Yu-Chiang Frank [3 ]
机构
[1] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan
[2] Univ Michigan, Program Robot & Autonomous Vehicles, Ann Arbor, MI 48109 USA
[3] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 11529, Taiwan
[4] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 10529, Taiwan
[5] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
关键词
Conditional random field (CRF); video object extraction (VOE); visual saliency;
D O I
10.1109/TIP.2013.2253483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a saliency-based video object extraction (VOE) framework. The proposed framework aims to automatically extract foreground objects of interest without any user interaction or the use of any training data (i.e., not limited to any particular type of object). To separate foreground and background regions within and across video frames, the proposed method utilizes visual and motion saliency information extracted from the input video. A conditional random field is applied to effectively combine the saliency induced features, which allows us to deal with unknown pose and scale variations of the foreground object (and its articulated parts). Based on the ability to preserve both spatial continuity and temporal consistency in the proposed VOE framework, experiments on a variety of videos verify that our method is able to produce quantitatively and qualitatively satisfactory VOE results.
引用
收藏
页码:2600 / 2610
页数:11
相关论文
共 50 条
  • [41] Proto-Object Based Visual Saliency Model with a Motion-Sensitive Channel
    Molin, Jamal Lottier
    Russell, Alexander F.
    Mihalas, Stefan
    Niebur, Ernst
    Etienne-Cummings, Ralph
    2013 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2013, : 25 - 28
  • [42] An unsupervised approach to automatic object extraction from a maritime video scene
    Grimaldi, Michel
    Bechar, Ikhlef
    Lelore, Thibault
    Guis, Vincente
    Bouchara, Frederic
    2014 4TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2014, : 378 - 383
  • [43] Fusion of Multiple Visual Cues for Visual Saliency Extraction from Wearable Camera Settings with Strong Motion
    Boujut, Hugo
    Benois-Pineau, Jenny
    Megret, Remi
    COMPUTER VISION - ECCV 2012, PT III, 2012, 7585 : 436 - 445
  • [44] Saliency Cuts: An Automatic Approach to Object Segmentation
    Fu, Yu
    Cheng, Jian
    Li, Zhenglong
    Lu, Hanqing
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 696 - 699
  • [45] A VISUAL SALIENCY-BASED METHOD FOR AUTOMATIC LUNG REGIONS EXTRACTION IN CHEST RADIOGRAPHS
    Li, Xin
    Chen, Leiting
    Chen, Junyu
    2017 14TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2017, : 162 - 165
  • [46] Saliency-Aware Video Object Segmentation
    Wang, Wenguan
    Shen, Jianbing
    Yang, Ruigang
    Porikli, Fatih
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (01) : 20 - 33
  • [47] Video Saliency Detection Using Object Proposals
    Guo, Fang
    Wang, Wenguan
    Shen, Jianbing
    Shao, Ling
    Yang, Jian
    Tao, Dacheng
    Tang, Yuan Yan
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (11) : 3159 - 3170
  • [48] Motion Pattern Extraction and Event Detection for Automatic Visual Surveillance
    Yassine Benabbas
    Nacim Ihaddadene
    Chaabane Djeraba
    EURASIP Journal on Image and Video Processing, 2011
  • [49] Motion Pattern Extraction and Event Detection for Automatic Visual Surveillance
    Benabbas, Yassine
    Ihaddadene, Nacim
    Djeraba, Chaabane
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2011,
  • [50] Exploring the Role of Video Playback Visual Cues in Object Retrieval Tasks
    Qin, Yechang
    Su, Jianchun
    Qin, Haozhao
    Tian, Yang
    SENSORS, 2024, 24 (10)