Exploring Visual and Motion Saliency for Automatic Video Object Extraction

被引:41
|
作者
Li, Wei-Te [1 ,2 ]
Chang, Haw-Shiuan [3 ]
Lien, Kuo-Chin [4 ]
Chang, Hui-Tang [5 ]
Wang, Yu-Chiang Frank [3 ]
机构
[1] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan
[2] Univ Michigan, Program Robot & Autonomous Vehicles, Ann Arbor, MI 48109 USA
[3] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 11529, Taiwan
[4] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 10529, Taiwan
[5] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
关键词
Conditional random field (CRF); video object extraction (VOE); visual saliency;
D O I
10.1109/TIP.2013.2253483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a saliency-based video object extraction (VOE) framework. The proposed framework aims to automatically extract foreground objects of interest without any user interaction or the use of any training data (i.e., not limited to any particular type of object). To separate foreground and background regions within and across video frames, the proposed method utilizes visual and motion saliency information extracted from the input video. A conditional random field is applied to effectively combine the saliency induced features, which allows us to deal with unknown pose and scale variations of the foreground object (and its articulated parts). Based on the ability to preserve both spatial continuity and temporal consistency in the proposed VOE framework, experiments on a variety of videos verify that our method is able to produce quantitatively and qualitatively satisfactory VOE results.
引用
收藏
页码:2600 / 2610
页数:11
相关论文
共 50 条
  • [31] Automatic moving object extraction toward compact video representation
    Fan, JP
    Fujita, G
    Furuie, M
    Onoye, T
    Shirakawa, T
    Wu, LD
    OPTICAL ENGINEERING, 2000, 39 (02) : 438 - 452
  • [32] Semi-automatic semantic object extraction for video coding
    Lu, ZT
    Pearlman, WA
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2000, : 304 - 307
  • [33] AUTOMATIC EXTRACTION OF VISUAL MOTION CHARACTERISTICS FOR EFFECTIVE COACHING
    Yoshikawa, Fumito
    Watanabe, Yasunori
    INTED2015: 9TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE, 2015, : 6162 - 6165
  • [34] Fast Video Saliency Detection via Maximally Stable Region Motion and Object Repeatability
    Huang, Xiaoming
    Zhang, Yu-Jin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 4458 - 4470
  • [35] Research on the Algorithm of Key Object Extraction in Motion Video Images
    Qu, Zhong
    Wei, Wei
    Zhang, Zhenwei
    Wang, Dong
    NEW TRENDS AND APPLICATIONS OF COMPUTER-AIDED MATERIAL AND ENGINEERING, 2011, 186 : 541 - +
  • [36] Automatic extraction of low-level object motion descriptors
    Ekin, T
    Tekalp, TM
    Mehrotra, T
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 633 - 636
  • [37] AUTOMATIC MULTI-OBJECT EXTRACTION FROM A NATURAL IMAGE BASED ON SALIENCY MAP
    Tian, Huawei
    Xiao, Yanhui
    Feng, Wengang
    Ding, Jianwei
    Tang, Yunqi
    2017 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2017), 2017, : 327 - 331
  • [38] Visual Saliency Based Object Tracking
    Zhang, Geng
    Yuan, Zejian
    Zheng, Nanning
    Sheng, Xingdong
    Liu, Tie
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 193 - +
  • [39] Automatic text extraction in digital video based on motion analysis
    Palma, D
    Ascenso, J
    Pereira, F
    IMAGE ANALYSIS AND RECOGNITION, PT 1, PROCEEDINGS, 2004, 3211 : 588 - 596
  • [40] Learning from object motion using visual saliency and speech phonemes by a humanoid robot
    Jin, Guolin
    Suzuki, Kenji
    2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2009), VOLS 1-4, 2009, : 1495 - 1500