Exploring Visual and Motion Saliency for Automatic Video Object Extraction

被引:41
|
作者
Li, Wei-Te [1 ,2 ]
Chang, Haw-Shiuan [3 ]
Lien, Kuo-Chin [4 ]
Chang, Hui-Tang [5 ]
Wang, Yu-Chiang Frank [3 ]
机构
[1] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan
[2] Univ Michigan, Program Robot & Autonomous Vehicles, Ann Arbor, MI 48109 USA
[3] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 11529, Taiwan
[4] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 10529, Taiwan
[5] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
关键词
Conditional random field (CRF); video object extraction (VOE); visual saliency;
D O I
10.1109/TIP.2013.2253483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a saliency-based video object extraction (VOE) framework. The proposed framework aims to automatically extract foreground objects of interest without any user interaction or the use of any training data (i.e., not limited to any particular type of object). To separate foreground and background regions within and across video frames, the proposed method utilizes visual and motion saliency information extracted from the input video. A conditional random field is applied to effectively combine the saliency induced features, which allows us to deal with unknown pose and scale variations of the foreground object (and its articulated parts). Based on the ability to preserve both spatial continuity and temporal consistency in the proposed VOE framework, experiments on a variety of videos verify that our method is able to produce quantitatively and qualitatively satisfactory VOE results.
引用
收藏
页码:2600 / 2610
页数:11
相关论文
共 50 条
  • [21] A System for Video Recommendation using Visual Saliency, Crowdsourced and Automatic Annotations
    Ferracani, Andrea
    Pezzatini, Daniele
    Bertini, Marco
    Meucci, Saverio
    Del Bimbo, Alberto
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 757 - 758
  • [22] End-to-end Visual Object Tracking with Motion Saliency Guidance
    Zhang, Yucheng
    Liu, Kexin
    Wang, Tian
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6566 - 6571
  • [23] Automatic video indexing via object motion analysis
    Courtney, JD
    PATTERN RECOGNITION, 1997, 30 (04) : 607 - 625
  • [24] An Automatic Visual Detecting Method for Semantic Object in Video
    Li Zongmin
    Li Deshan
    Li Hua
    Lin Zongkai
    2008 3RD INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND APPLICATIONS, VOLS 1 AND 2, 2008, : 210 - 215
  • [25] Preserving Motion-Tolerant Contextual Visual Saliency for Video Resizing
    Chen, Duan-Yu
    Luo, Yi-Shiou
    IEEE TRANSACTIONS ON MULTIMEDIA, 2013, 15 (07) : 1616 - 1627
  • [26] Compressed domain motion segmentation for video object extraction
    Babu, RV
    Ramakrishnan, KR
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3788 - 3791
  • [27] Video object motion segmentation for intelligent visual surveillance
    Jiang, M.
    Crookes, D.
    IMVIP 2007: INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, PROCEEDINGS, 2007, : 202 - 202
  • [28] How is Motion Integrated into a Proto-Object Based Visual Saliency Model?
    Molin, Jamal Lottier
    Etienne-Cummings, Ralph
    Niebur, Ernst
    2015 49TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2015,
  • [29] Video Saliency Detection Using Motion Saliency Filter
    Luo, Lei
    Jiang, Rongxin
    Tian, Xiang
    Chen, Yaowu
    2013 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2013, : 1045 - 1049
  • [30] Integration of motion and image features for automatic video object segmentation
    Wei, W
    Ngan, KN
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 361 - 364