Fast cg-based methods for Tikhonov-Phillips regularization

被引:77
|
作者
Frommer, A
Maass, P
机构
[1] Berg Univ Gesamthsch Wuppertal, Fachbereich Math, D-42097 Wuppertal, Germany
[2] Univ Potsdam, Fachbereich Math, D-14415 Potsdam, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1999年 / 20卷 / 05期
关键词
cg-method; shifted systems; ill-posed problems; Tikhonov-Phillips regularization;
D O I
10.1137/S1064827596313310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tikhonov-Phillips regularization is one of the best-known regularization methods for inverse problems. A posteriori criteria for determining the regularization parameter alpha require solving (*) (A*A + alpha I)x = A*y(delta) for different values of alpha. We investigate two methods for accelerating the standard cg-algorithm for solving the family of systems (*). The first one utilizes a stopping criterion for the cg-iterations which depends on alpha and delta. The second method exploits the shifted structure of the linear systems (*), which allows us to solve (*) simultaneously for different values of alpha. We present numerical experiments for three test problems which illustrate the practical efficiency of the new methods. The experiments as well as theoretical considerations show that run times are accelerated by a factor of at least 3.
引用
收藏
页码:1831 / 1850
页数:20
相关论文
共 50 条
  • [1] Fast CG-based methods for Tikhonov-Phillips regularization
    Frommer, Andreas
    Maass, Peter
    SIAM Journal on Scientific Computing, 20 (05): : 1831 - 1850
  • [2] Tikhonov-Phillips regularization with operator dependent seminorms
    Huckle, Thomas Kilian
    Sedlacek, Matous
    NUMERICAL ALGORITHMS, 2012, 60 (02) : 339 - 353
  • [3] Wavelet-accelerated Tikhonov-Phillips regularization with applications
    Maass, P
    Rieder, A
    INVERSE PROBLEMS IN MEDICAL IMAGING AND NONDESTRUCTIVE TESTING, 1997, : 134 - 158
  • [4] An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection
    Maass, P
    Pereverzev, SV
    Ramlau, R
    Solodky, SG
    NUMERISCHE MATHEMATIK, 2001, 87 (03) : 485 - 502
  • [5] An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection
    Peter Maaß
    Sergei V. Pereverzev
    Ronny Ramlau
    Sergei G. Solodky
    Numerische Mathematik, 2001, 87 : 485 - 502
  • [6] Discretized Tikhonov-Phillips regularization for a naturally linearized parameter identification problem
    Cao, H
    JOURNAL OF COMPLEXITY, 2005, 21 (06) : 864 - 877
  • [7] Approximate source conditions in Tikhonov-Phillips regularization and consequences for inverse problems with multiplication operators
    Hofmann, B
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (03) : 351 - 371
  • [8] Sparse-data CT image reconstruction using Tikhonov-Phillips regularization and GVC: application to plasma images
    Terasaki, Naomi
    Iwama, Naofumi
    Hosoda, Yohsuke
    Systems and Computers in Japan, 1999, 30 (11) : 85 - 93
  • [9] Existence, uniqueness and stability of minimizers of generalized Tikhonov-Phillips functionals
    Mazzieri, G. L.
    Spies, R. D.
    Temperini, K. G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (01) : 396 - 411
  • [10] Tikhonov–Phillips regularization with operator dependent seminorms
    Thomas Kilian Huckle
    Matous Sedlacek
    Numerical Algorithms, 2012, 60 : 339 - 353