Fast cg-based methods for Tikhonov-Phillips regularization

被引:77
|
作者
Frommer, A
Maass, P
机构
[1] Berg Univ Gesamthsch Wuppertal, Fachbereich Math, D-42097 Wuppertal, Germany
[2] Univ Potsdam, Fachbereich Math, D-14415 Potsdam, Germany
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 1999年 / 20卷 / 05期
关键词
cg-method; shifted systems; ill-posed problems; Tikhonov-Phillips regularization;
D O I
10.1137/S1064827596313310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tikhonov-Phillips regularization is one of the best-known regularization methods for inverse problems. A posteriori criteria for determining the regularization parameter alpha require solving (*) (A*A + alpha I)x = A*y(delta) for different values of alpha. We investigate two methods for accelerating the standard cg-algorithm for solving the family of systems (*). The first one utilizes a stopping criterion for the cg-iterations which depends on alpha and delta. The second method exploits the shifted structure of the linear systems (*), which allows us to solve (*) simultaneously for different values of alpha. We present numerical experiments for three test problems which illustrate the practical efficiency of the new methods. The experiments as well as theoretical considerations show that run times are accelerated by a factor of at least 3.
引用
收藏
页码:1831 / 1850
页数:20
相关论文
共 50 条
  • [21] An Alternative to Tikhonov Regularization for Linear Sampling Methods
    Kim, K.
    Leem, K. H.
    Pelekanos, G.
    ACTA APPLICANDAE MATHEMATICAE, 2010, 112 (02) : 171 - 180
  • [22] Tikhonov regularization methods for variational inequality problems
    Qi, HD
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (01) : 193 - 201
  • [23] THE TIKHONOV-LAVRENTIEV THEORY OF REGULARIZATION METHODS
    SHAFIEV, RA
    DOKLADY AKADEMII NAUK SSSR, 1985, 282 (04): : 804 - 808
  • [24] Tikhonov Regularization Methods for Variational Inequality Problems
    H. D. Qi
    Journal of Optimization Theory and Applications, 1999, 102 : 193 - 201
  • [25] Tikhonov regularization methods for inverse variational inequalities
    Xue-ping Luo
    Optimization Letters, 2014, 8 : 877 - 887
  • [26] Tikhonov regularization methods for inverse variational inequalities
    Luo, Xue-ping
    OPTIMIZATION LETTERS, 2014, 8 (03) : 877 - 887
  • [27] A fast Tikhonov regularization method based on homotopic mapping for electrical resistance tomography
    Li, Shouxiao
    Wang, Huaxiang
    Liu, Tonghai
    Cui, Ziqiang
    Chen, Joanna N.
    Xia, Zihan
    Guo, Qi
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (04):
  • [28] EXISTENCE AND STABILITY OF MINIMIZERS OF MIXED ANISOTROPIC BV-L2 TIKHONOV-PHILLIPS FUNCTIONALS: APPLICATIONS TO IMAGE RESTORATION.
    Mazzieri, Gisela L.
    Spies, Ruben D.
    Temperini, Karina G.
    PROCEEDINGS OF THE 1ST PAN-AMERICAN CONGRESS ON COMPUTATIONAL MECHANICS AND XI ARGENTINE CONGRESS ON COMPUTATIONAL MECHANICS, 2015, : 1144 - 1154
  • [29] Sylvester Tikhonov-regularization methods in image restoration
    Bouhamidi, A.
    Jbilou, K.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) : 86 - 98
  • [30] PHILLIPS-TIKHONOV REGULARIZATION OF PLASMA IMAGE-RECONSTRUCTION WITH THE GENERALIZED CROSS VALIDATION
    IWAMA, N
    YOSHIDA, H
    TAKIMOTO, H
    SHEN, Y
    TAKAMURA, S
    TSUKISHIMA, T
    APPLIED PHYSICS LETTERS, 1989, 54 (06) : 502 - 504