Dynamic Parrondo's paradox

被引:35
|
作者
Canovas, J. S.
Linero, A.
Peralta-Salas, D.
机构
[1] Univ Complutense Madrid, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30203, Spain
[3] Univ Murcia, Dept Matemat, Murcia 30100, Spain
关键词
chaos; one-dimensional dynamics; composition of maps; turbulence; Parrondo's paradox;
D O I
10.1016/j.physd.2006.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is focused on studying Parrondo's paradox in non-linear dynamics, specifically how the periodic combination of the individual maps f and g can give rise to chaos or order. We construct dynamical systems exhibiting the paradox for several notions of chaos derived from topological dynamics. The effect of altering the order of the combination, i.e. considering f circle g or g circle f, is analyzed, as well as the robustness of the Parrondo effect under small perturbations. Conditions for avoiding Parrondian dynamics are also obtained, placing special emphasis on the notion of chaos given by turbulence. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 50 条
  • [1] A dynamic Parrondo's paradox for continuous seasonal systems
    Cima, Anna
    Gasull, Armengol
    Manosa, Victor
    [J]. NONLINEAR DYNAMICS, 2020, 102 (02) : 1033 - 1043
  • [2] A dynamic Parrondo’s paradox for continuous seasonal systems
    Anna Cima
    Armengol Gasull
    Víctor Mañosa
    [J]. Nonlinear Dynamics, 2020, 102 : 1033 - 1043
  • [3] ANALYZING WHEN THE DYNAMIC PARRONDO'S PARADOX IS NOT POSSIBLE
    Canovas, Jose S.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09): : 2975 - 2978
  • [4] Parrondo's paradox
    Harmer, GP
    Abbott, D
    [J]. STATISTICAL SCIENCE, 1999, 14 (02) : 206 - 213
  • [5] Parrondo's paradox and complementary Parrondo processes
    Soo, Wayne Wah Ming
    Cheong, Kang Hao
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (01) : 17 - 26
  • [6] Parrondo's paradox for homoeomorphisms
    Gasull, A.
    Hernandez-Corbato, L.
    Ruiz del Portal, F. R.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (04) : 817 - 825
  • [7] A review of Parrondo's paradox
    Harmer, Gregory P.
    Abbott, Derek
    [J]. FLUCTUATION AND NOISE LETTERS, 2002, 2 (02): : R71 - R107
  • [8] The paradox of Parrondo's games
    Harmer, GP
    Abbott, D
    Taylor, PG
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (1994): : 247 - 259
  • [9] Developments in Parrondo's Paradox
    Abbott, Derek
    [J]. APPLICATIONS OF NONLINEAR DYNAMICS-MODEL AND DESIGN OF COMPLEX SYSTEMS, 2009, : 307 - 321
  • [10] Beyond Parrondo's Paradox
    Jian-Jun SHU
    Qi-Wen WANG
    [J]. Scientific Reports, 4