The paradox of Parrondo's games

被引:56
|
作者
Harmer, GP [1 ]
Abbott, D
Taylor, PG
机构
[1] Univ Adelaide, Ctr Biomed Engn, CBME, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Dept Elect & Elect Engn, Adelaide, SA 5005, Australia
[3] Univ Adelaide, Dept Appl Math, Adelaide, SA 5005, Australia
关键词
gambling paradox; Brownian ratchet; discrete-time Markov chains;
D O I
10.1098/rspa.2000.0516
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce Parrondo's paradox that involves games of chance. We consider two fair games, A and B, both of which can be made to lose by changing a biasing parameter. An apparently paradoxical situation arises when the two games are played in any alternating order. A winning expectation is produced, even though both games A and B are losing when we play them individually. We develop an explanation of the phenomenon in terms of a Brownian ratchet model, and also develop a mathematical analysis using discrete-time Markov chains. From the analysis we investigate the range of parameter values for which Parrondo's paradox exists.
引用
收藏
页码:247 / 259
页数:13
相关论文
共 50 条
  • [1] Simple games to illustrate Parrondo's paradox
    Martin, H
    von Baeyer, HC
    [J]. AMERICAN JOURNAL OF PHYSICS, 2004, 72 (05) : 710 - 714
  • [2] The paradox of group behaviors based on Parrondo's games
    Xie, Neng-gang
    Guo, Jia-yi
    Ye, Ye
    Wang, Chao
    Wang, Lu
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (23) : 6146 - 6155
  • [3] On Parrondo's paradox: How to construct unfair games by composing fair games
    Key, E. S.
    Klosek, M. M.
    Abbott, D.
    [J]. ANZIAM JOURNAL, 2006, 47 : 495 - 511
  • [4] Parrondo's paradox
    Harmer, GP
    Abbott, D
    [J]. STATISTICAL SCIENCE, 1999, 14 (02) : 206 - 213
  • [5] Parrondo's paradox and complementary Parrondo processes
    Soo, Wayne Wah Ming
    Cheong, Kang Hao
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (01) : 17 - 26
  • [6] Parrondo's paradox for homoeomorphisms
    Gasull, A.
    Hernandez-Corbato, L.
    Ruiz del Portal, F. R.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (04) : 817 - 825
  • [7] A review of Parrondo's paradox
    Harmer, Gregory P.
    Abbott, Derek
    [J]. FLUCTUATION AND NOISE LETTERS, 2002, 2 (02): : R71 - R107
  • [8] Developments in Parrondo's Paradox
    Abbott, Derek
    [J]. APPLICATIONS OF NONLINEAR DYNAMICS-MODEL AND DESIGN OF COMPLEX SYSTEMS, 2009, : 307 - 321
  • [9] Beyond Parrondo's Paradox
    Jian-Jun SHU
    Qi-Wen WANG
    [J]. Scientific Reports, 4
  • [10] Dynamic Parrondo's paradox
    Canovas, J. S.
    Linero, A.
    Peralta-Salas, D.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (02) : 177 - 184