Parrondo's paradox for homoeomorphisms

被引:0
|
作者
Gasull, A. [1 ,2 ]
Hernandez-Corbato, L. [3 ,4 ]
Ruiz del Portal, F. R. [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Edifici Cc, Barcelona 08193, Spain
[2] Ctr Recerca Matemat, Edifici Cc,Campus Bellaterra, Barcelona 08193, Spain
[3] Univ Complutense Madrid, Dept Algebra Geometria & Topol, Madrid, Spain
[4] CSIC UAM UCM UC3M, Inst Ciencias Matemat, Madrid, Spain
关键词
Dynamical Parrondo's paradox; fixed points; local and global asymptotic stability; random dynamical systems; DIFFERENCE-EQUATIONS; ATTRACTORS; DISCRETE;
D O I
10.1017/prm.2021.28
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f o g and g o f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps appears with a certain probability. This planar construction is also extended to any dimension >2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.
引用
下载
收藏
页码:817 / 825
页数:9
相关论文
共 50 条
  • [1] Parrondo's paradox
    Harmer, GP
    Abbott, D
    STATISTICAL SCIENCE, 1999, 14 (02) : 206 - 213
  • [2] Parrondo's paradox and complementary Parrondo processes
    Soo, Wayne Wah Ming
    Cheong, Kang Hao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (01) : 17 - 26
  • [3] A review of Parrondo's paradox
    Harmer, Gregory P.
    Abbott, Derek
    FLUCTUATION AND NOISE LETTERS, 2002, 2 (02): : R71 - R107
  • [4] The paradox of Parrondo's games
    Harmer, GP
    Abbott, D
    Taylor, PG
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (1994): : 247 - 259
  • [5] Developments in Parrondo's Paradox
    Abbott, Derek
    APPLICATIONS OF NONLINEAR DYNAMICS-MODEL AND DESIGN OF COMPLEX SYSTEMS, 2009, : 307 - 321
  • [6] Beyond Parrondo's Paradox
    Jian-Jun SHU
    Qi-Wen WANG
    Scientific Reports, 4
  • [7] Dynamic Parrondo's paradox
    Canovas, J. S.
    Linero, A.
    Peralta-Salas, D.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 218 (02) : 177 - 184
  • [8] Beyond Parrondo's Paradox
    Shu, Jian-Jun
    Wang, Qi-Wen
    SCIENTIFIC REPORTS, 2014, 4
  • [9] Stochastic dynamics and Parrondo's paradox
    Behrends, Ehrhard
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (02) : 198 - 206
  • [10] Quantum implementation of Parrondo's paradox
    Gawron, P
    Miszczak, JA
    FLUCTUATION AND NOISE LETTERS, 2005, 5 (04): : L471 - L478