Dynamic Parrondo's paradox

被引:35
|
作者
Canovas, J. S.
Linero, A.
Peralta-Salas, D.
机构
[1] Univ Complutense Madrid, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30203, Spain
[3] Univ Murcia, Dept Matemat, Murcia 30100, Spain
关键词
chaos; one-dimensional dynamics; composition of maps; turbulence; Parrondo's paradox;
D O I
10.1016/j.physd.2006.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is focused on studying Parrondo's paradox in non-linear dynamics, specifically how the periodic combination of the individual maps f and g can give rise to chaos or order. We construct dynamical systems exhibiting the paradox for several notions of chaos derived from topological dynamics. The effect of altering the order of the combination, i.e. considering f circle g or g circle f, is analyzed, as well as the robustness of the Parrondo effect under small perturbations. Conditions for avoiding Parrondian dynamics are also obtained, placing special emphasis on the notion of chaos given by turbulence. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:177 / 184
页数:8
相关论文
共 50 条
  • [21] Simple games to illustrate Parrondo's paradox
    Martin, H
    von Baeyer, HC
    [J]. AMERICAN JOURNAL OF PHYSICS, 2004, 72 (05) : 710 - 714
  • [22] Occurrence of complementary processes in parrondo's paradox
    Soo, Wayne Wah Ming
    Cheong, Kang Hao
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 412 : 180 - 185
  • [23] Multicellular survival as a consequence of Parrondo's paradox
    Cheong, Kang Hao
    Koh, Jin Ming
    Jones, Michael C.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (23) : E5258 - E5259
  • [24] REVISITING PARRONDO'S PARADOX FOR THE LOGISTIC FAMILY
    Canovas, Jose S.
    Munoz, Maria
    [J]. FLUCTUATION AND NOISE LETTERS, 2013, 12 (03):
  • [25] ASYMMETRY AND DISORDER: A DECADE OF PARRONDO'S PARADOX
    Abbott, Derek
    [J]. FLUCTUATION AND NOISE LETTERS, 2010, 9 (01): : 129 - 156
  • [26] Parrondo's paradox via redistribution of wealth
    Ethier, S. N.
    Lee, Jiyeon
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 21
  • [27] A MARKOVIAN SLOT MACHINE AND PARRONDO'S PARADOX
    Ethier, S. N.
    Lee, Jiyeon
    [J]. ANNALS OF APPLIED PROBABILITY, 2010, 20 (03): : 1098 - 1125
  • [28] Two issues surrounding Parrondo's paradox
    Costa, A
    Fackrell, M
    Taylor, PG
    [J]. ADVANCES IN DYNAMIC GAMES: APPLICATIONS TO ECONOMICS, FINANCE, OPTIMIZATION, AND STOCHASTIC CONTROL, 2005, 7 : 599 - 609
  • [29] Parrondo's paradox or chaos control in discrete two-dimensional dynamic systems
    Mendoza, Steve A.
    Matt, Eliza W.
    Guimardes-Blandon, Diego R.
    Peacock-Lopez, Enrique
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 106 : 86 - 93
  • [30] Primary Parrondo paradox
    Cleuren, B
    Van Den Broeck, C
    [J]. EUROPHYSICS LETTERS, 2004, 67 (02): : 151 - 157