A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory

被引:45
|
作者
Ahmad, Bashir [1 ]
Ntouyas, Sotiris K. [1 ,2 ]
Tariboon, Jessada [3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Fac Sci, NAAM Res Grp, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[3] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
关键词
Hadamard derivative; Riemann-Liouville fractional integral; Inclusions; Endpoint theory; DERIVATIVES; PARAMETERS; SYSTEMS; ORDER;
D O I
10.1016/j.aml.2015.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the existence of solutions for a mixed initial value problem of Hadamard and Riemann-Liouville fractional integro-differential inclusions by means of endpoint theory. The main result is well illustrated with the aid of example. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9 / 14
页数:6
相关论文
共 50 条
  • [41] Monotone Iterative Technique for Riemann–Liouville Fractional Integro-Differential Equations with Advanced Arguments
    Zhenhai Liu
    Jihua Sun
    Iván Szántó
    [J]. Results in Mathematics, 2013, 63 : 1277 - 1287
  • [42] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Tohru Morita
    Ken-ichi Sato
    [J]. Fractional Calculus and Applied Analysis, 2013, 16 : 630 - 653
  • [43] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    [J]. FIXED POINT THEORY, 2012, 13 (02): : 329 - 336
  • [44] Liouville and Riemann-Liouville fractional derivatives via contour integrals
    Morita, Tohru
    Sato, Ken-ichi
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (03) : 630 - 653
  • [45] Nonlocal Riemann-Liouville fractional evolution inclusions in Banach space
    Bilal, Shamas
    Donchev, Tzanko
    Kitanov, Nikolay
    Javaid, Nasir
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (08)
  • [46] ON THE SET OF SOLUTIONS OF FRACTIONAL ORDER RIEMANN-LIOUVILLE INTEGRAL INCLUSIONS
    Abbas, Said
    Benchohra, Mouffak
    [J]. DEMONSTRATIO MATHEMATICA, 2013, 46 (02) : 271 - 281
  • [47] Optimal Control for a Class of Riemann-Liouville Fractional Evolution Inclusions
    Yang, He
    Ren, Qian
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [48] On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation
    Dumitru Baleanu
    Shahram Rezapour
    Zohreh Saberpour
    [J]. Boundary Value Problems, 2019
  • [49] Existence Results for Sequential Riemann-Liouville and Caputo Fractional Differential Inclusions with Generalized Fractional Integral Conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    Alsaedi, Ahmed
    [J]. MATHEMATICS, 2020, 8 (06)
  • [50] Boundary Value Problems for Riemann–Liouville Fractional Differential Inclusions with Nonlocal Hadamard Fractional Integral Conditions
    Sotiris K. Ntouyas
    Jessada Tariboon
    Weerawat Sudsutad
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 939 - 954