A backward euler orthogonal spline collocation method for the time-fractional Fokker-Planck equation

被引:21
|
作者
Fairweather, Graeme [1 ]
Zhang, Haixiang [2 ]
Yang, Xuehua [2 ]
Xu, Da [3 ]
机构
[1] Amer Math Soc, Math Reviews, Ann Arbor, MI 48103 USA
[2] Hunan Univ Technol, Sch Sci, Zhuzhou 412008, Hunan, Peoples R China
[3] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
关键词
time-fractional Fokker-Planck equation; orthogonal spline collocation method; Caputo derivative; backward Euler method; stability; convergence; superconvergence; FINITE-DIFFERENCE APPROXIMATIONS; DIAGONAL LINEAR-SYSTEMS; MODIFIED ALTERNATE ROW; NUMERICAL-SOLUTION; FORTRAN PACKAGES; SPACE; DIFFUSION; ALGORITHM; FLOW;
D O I
10.1002/num.21958
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and analyze a novel numerical method for solving a time-fractional Fokker-Planck equation which models an anomalous subdiffusion process. In this method, orthogonal spline collocation is used for the spatial discretization and the time-stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence of the method are considered, and the theoretical results are supported by numerical examples, which also exhibit superconvergence. (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1534-1550, 2015
引用
收藏
页码:1534 / 1550
页数:17
相关论文
共 50 条
  • [31] Numerical algorithm for the time fractional Fokker-Planck equation
    Deng, Weihua
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 1510 - 1522
  • [32] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [33] Fokker-Planck equation for fractional systems
    Tarasov, Vasily E.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (06): : 955 - 967
  • [34] Fractional representation of Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (10) : 1929 - 1935
  • [35] Local fractional Fokker-Planck equation
    Kolwankar, KM
    Gangal, AD
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (02) : 214 - 217
  • [36] Parameters of the fractional Fokker-Planck equation
    Denisov, S. I.
    Haenggi, P.
    Kantz, H.
    [J]. EPL, 2009, 85 (04)
  • [37] Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation
    Qiao, Leijie
    Xu, Da
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1478 - 1493
  • [38] A SEMIDISCRETE FINITE ELEMENT APPROXIMATION OF A TIME-FRACTIONAL FOKKER-PLANCK EQUATION WITH NONSMOOTH INITIAL DATA
    Le, Kim Ngan
    McLean, William
    Mustapha, Kassem
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : A3831 - A3852
  • [39] A numerical algorithm for the space and time fractional Fokker-Planck equation
    Vanani, S. Karimi
    Aminataei, A.
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2012, 22 (08) : 1037 - 1052
  • [40] Numerical Treatment of the Modified Time Fractional Fokker-Planck Equation
    Zhang, Yuxin
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,