Hygrothermal performance of cross-laminated timber wall assemblies with built-in moisture: field measurements and simulations

被引:81
|
作者
McClung, Ruth [1 ]
Ge, Hua [2 ]
Straube, John [3 ]
Wang, Jieying [4 ]
机构
[1] Morrison Hershfield, Vancouver, BC, Canada
[2] Concordia Univ, Montreal, PQ H3G 1M8, Canada
[3] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
[4] FPInnovations, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cross-laminated timber (CLT) wall assemblies; Hygrothermal performance; Field test; Moisture content; Wood; Hygrothermal simulations;
D O I
10.1016/j.buildenv.2013.09.008
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Cross-laminated timber (CLT) panels have potential market in North America for building mid-rise or even taller structures due to their good structural and fire safety performance, light weight, and prefabricated nature. However, to ensure long-term durability when used in building enclosures, the hygrothermal performance of CLT wall assemblies needs to be evaluated in terms of wetting and drying potential. A test wall consisting of sixteen 0.6 m by 0.6 m CLT panels made of five different wood species (or species groups) and four different wall assemblies was constructed. The CLT panels were initially wetted with the moisture content (MC) in the surface layers approaching or exceeding 30%, and monitored for MCs and temperatures at different depths over one year in a building envelope test facility located in Waterloo, Ontario. The drying behaviour of these panels was analysed and the measured MCs over time were compared to simulation results using a commercial hygrothermal program. This field study showed that most of the CLT panels dried to below 26% within one month except for CLT walls with a low-permeance interior membrane, which indicated that none of the CLT walls would likely remain at a high MC level long enough to initiate decay under the conditions tested. The simulation results generally agree well with the field data at MCs below 26%. However, it was found that the hygrothermal simulation program tended to overestimate the MC in the centre of the panels by up to 5-10%, and simulated MCs at locations deep into the CLT panels were not as responsive to changes in ambient conditions, as the measurements indicated for assemblies with high exterior permeance. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:95 / 110
页数:16
相关论文
共 50 条
  • [21] Performance of Polyurethane Adhesive in Hardwood Cross-Laminated Timber
    Henfield, Bradia T.
    Franca, Tamara
    Franca, Frederico
    Quin, Franklin
    Arango, Rachel A.
    Ohno, Katie M.
    BIORESOURCES, 2025, 20 (01): : 2135 - 2149
  • [22] Flexural Performance of Splice Connections in Cross-Laminated Timber
    Subhani, Mahbube
    Shill, Sukanta Kumer
    Al-Deen, Safat
    Anwar-Us-Saadat, Mohammad
    Ashraf, Mahmud
    BUILDINGS, 2022, 12 (08)
  • [23] Moisture and mould growth risk of cross-laminated timber basement walls: Laboratory and field investigation
    Imamura, Fernanda Bezerra Tomaduci
    Chen, Yuxiang
    Deng, Lijun
    Chui, Ying Hei
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 428
  • [24] Shear behavior of cross-laminated timber wall consisting of small panels
    Oh, Jung-Kwon
    Hong, Jung-Pyo
    Kim, Chul-Ki
    Pang, Sung-Jun
    Lee, Sang-Joon
    Lee, Jun-Jae
    JOURNAL OF WOOD SCIENCE, 2017, 63 (01) : 45 - 55
  • [25] Study on in-plane compressive performance of cross-laminated bamboo and timber (CLBT) wall elements
    Hao Li
    Libin Wang
    Brad Jianhe Wang
    Yang Wei
    European Journal of Wood and Wood Products, 2023, 81 : 343 - 355
  • [26] Shear behavior of cross-laminated timber wall consisting of small panels
    Jung-Kwon Oh
    Jung-Pyo Hong
    Chul-Ki Kim
    Sung-Jun Pang
    Sang-Joon Lee
    Jun-Jae Lee
    Journal of Wood Science, 2017, 63 : 45 - 55
  • [27] Behaviour of Loaded Cross-Laminated Timber Wall Elements in Fire Conditions
    Joachim Schmid
    Agnese Menis
    Massimo Fragiacomo
    Isaia Clemente
    Giovanna Bochicchio
    Fire Technology, 2015, 51 : 1341 - 1370
  • [28] Elevated Temperature Effects on Performance of a Cross-Laminated Timber Floor-to-Wall Bracket Connections
    Mahr, Kolton
    Sinha, Arijit
    Barbosa, Andre R.
    JOURNAL OF STRUCTURAL ENGINEERING, 2020, 146 (09)
  • [29] Fire Resistance Test and Numerical Simulation of Cross-Laminated Timber Wall
    Zhang J.
    Liu D.
    Zhang Q.
    Bai Y.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2021, 49 (04): : 9 - 19
  • [30] Behaviour of Loaded Cross-Laminated Timber Wall Elements in Fire Conditions
    Schmid, Joachim
    Menis, Agnese
    Fragiacomo, Massimo
    Clemente, Isaia
    Bochicchio, Giovanna
    FIRE TECHNOLOGY, 2015, 51 (06) : 1341 - 1370