Probabilistic Warp Consistency for Weakly-Supervised Semantic Correspondences

被引:4
|
作者
Truong, Prune [1 ]
Danelljan, Martin [1 ]
Yu, Fisher [1 ]
Luc Van Gool [1 ]
机构
[1] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
关键词
D O I
10.1109/CVPR52688.2022.00851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose Probabilistic Warp Consistency, a weakly-supervised learning objective for semantic matching. Our approach directly supervises the dense matching scores predicted by the network, encoded as a conditional probability distribution. We first construct an image triplet by applying a known warp to one of the images in a pair depicting different instances of the same object class. Our probabilistic learning objectives are then derived using the constraints arising from the resulting image triplet. We further account for occlusion and background clutter present in real image pairs by extending our probabilistic output space with a learnable unmatched state. To supervise it, we design an objective between image pairs depicting different object classes. We validate our method by applying it to four recent semantic matching architectures. Our weakly-supervised approach sets a new state-of-the-art on four challenging semantic matching benchmarks. Lastly, we demonstrate that our objective also brings substantial improvements in the strongly-supervised regime, when combined with keypoint annotations.
引用
收藏
页码:8698 / 8708
页数:11
相关论文
共 50 条
  • [41] Weakly-supervised Semantic Guided Hashing for Social Image Retrieval
    Li, Zechao
    Tang, Jinhui
    Zhang, Liyan
    Yang, Jian
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (8-9) : 2265 - 2278
  • [42] IMAGE AUGMENTATION WITH CONTROLLED DIFFUSION FOR WEAKLY-SUPERVISED SEMANTIC SEGMENTATION
    Wu, Wangyu
    Dai, Tianhong
    Huang, Xiaowei
    Ma, Fei
    Xiao, Jimin
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6175 - 6179
  • [43] Pseudo-mask Matters in Weakly-supervised Semantic Segmentation
    Li, Yi
    Kuang, Zhanghui
    Liu, Liyang
    Chen, Yimin
    Zhang, Wayne
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 6944 - 6953
  • [44] Weakly-Supervised Semantic Segmentation via Self-training
    Cheng, Hao
    Gu, Chaochen
    Wu, Kaijie
    2020 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND ARTIFICIAL INTELLIGENCE (CCEAI 2020), 2020, 1487
  • [45] Deep graph cut network for weakly-supervised semantic segmentation
    Feng, Jiapei
    Wang, Xinggang
    Liu, Wenyu
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (03)
  • [46] Deep graph cut network for weakly-supervised semantic segmentation
    Jiapei FENG
    Xinggang WANG
    Wenyu LIU
    ScienceChina(InformationSciences), 2021, 64 (03) : 57 - 68
  • [47] STC: A Simple to Complex Framework for Weakly-Supervised Semantic Segmentation
    Wei, Yunchao
    Liang, Xiaodan
    Chen, Yunpeng
    Shen, Xiaohui
    Cheng, Ming-Ming
    Feng, Jiashi
    Zhao, Yao
    Yan, Shuicheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (11) : 2314 - 2320
  • [48] Deep graph cut network for weakly-supervised semantic segmentation
    Jiapei Feng
    Xinggang Wang
    Wenyu Liu
    Science China Information Sciences, 2021, 64
  • [49] Boosted MIML method for weakly-supervised image semantic segmentation
    Yang Liu
    Zechao Li
    Jing Liu
    Hanqing Lu
    Multimedia Tools and Applications, 2015, 74 : 543 - 559
  • [50] Efficient Object Region Discovery for Weakly-supervised Semantic Segmentation
    Zhong, Min
    Zeng, Gang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2166 - 2171