Boosted MIML method for weakly-supervised image semantic segmentation

被引:0
|
作者
Yang Liu
Zechao Li
Jing Liu
Hanqing Lu
机构
[1] Institution of Automation Chinese Academy of Sciences,National Laboratory of Pattern Recognition
[2] Nanjing University of Science and Technology,School of Computer Science
来源
关键词
MIML; Weakly-supervised; Semantic segmentation; Objectness;
D O I
暂无
中图分类号
学科分类号
摘要
Weakly-supervised image semantic segmentation aims to segment images into semantically consistent regions with only image-level labels are available, and is of great significance for fine-grained image analysis, retrieval and other possible applications. In this paper, we propose a Boosted Multi-Instance Multi-Label (BMIML) learning method to address this problem, the approach is built upon the following principles. We formulate the image semantic segmentation task as a MIML problem under the boosting framework, where the goal is to simultaneously split the superpixels obtained from over-segmented images into groups and train one classifier for each group. In the method, a loss function which uses the image-level labels as weakly-supervised constraints, is employed to suitable semantic labels to these classifiers. At the same time a contextual loss term is also combined to reduce the ambiguities existing in the training data. In each boosting round, we introduce an “objectness” measure to jointly reweigh the instances, in order to overcome the disturbance from highly frequent background superpixels. We demonstrate that BMIML outperforms the state-of-the-arts for weakly-supervised semantic segmentation on two widely used datasets, i.e., MSRC and LabelMe.
引用
收藏
页码:543 / 559
页数:16
相关论文
共 50 条
  • [1] Boosted MIML method for weakly-supervised image semantic segmentation
    Liu, Yang
    Li, Zechao
    Liu, Jing
    Lu, Hanqing
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (02) : 543 - 559
  • [2] Weakly-Supervised Dual Clustering for Image Semantic Segmentation
    Liu, Yang
    Liu, Jing
    Li, Zechao
    Tang, Jinhui
    Lu, Hanqing
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 2075 - 2082
  • [3] Weakly-supervised Semantic Segmentation in Cityscape via Hyperspectral Image
    Huang, Yuxing
    Shen, Qiu
    Fu, Ying
    You, Shaodi
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1117 - 1126
  • [4] A Weakly-Supervised Approach for Semantic Segmentation
    Feng, Yanqing
    Wang, Lunwen
    [J]. PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 2311 - 2314
  • [5] GraphNet: Learning Image Pseudo Annotations for Weakly-Supervised Semantic Segmentation
    Pu, Mengyang
    Huang, Yaping
    Guan, Qingji
    Zou, Qi
    [J]. PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 483 - 491
  • [6] Partial Image Texture Translation Using Weakly-Supervised Semantic Segmentation
    Benitez-Garcia, Gibran
    Shimoda, Wataru
    Matsuo, Shin
    Yanai, Keiji
    [J]. NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, JSAI-ISAI 2019, 2020, 12331 : 387 - 401
  • [7] A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains
    Chan, Lyndon
    Hosseini, Mahdi S.
    Plataniotis, Konstantinos N.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (02) : 361 - 384
  • [8] Weakly-Supervised Image Semantic Segmentation Based on Superpixel Region Merging
    Jiang, Quanchun
    Tawose, Olamide Timothy
    Pei, Songwen
    Chen, Xiaodong
    Jiang, Linhua
    Wang, Jiayao
    Zhao, Dongfang
    [J]. BIG DATA AND COGNITIVE COMPUTING, 2019, 3 (02) : 1 - 20
  • [9] A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains
    Lyndon Chan
    Mahdi S. Hosseini
    Konstantinos N. Plataniotis
    [J]. International Journal of Computer Vision, 2021, 129 : 361 - 384
  • [10] Token Contrast for Weakly-Supervised Semantic Segmentation
    Ru, Lixiang
    Zheng, Hehang
    Zhan, Yibing
    Du, Bo
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3093 - 3102