Probabilistic Warp Consistency for Weakly-Supervised Semantic Correspondences

被引:4
|
作者
Truong, Prune [1 ]
Danelljan, Martin [1 ]
Yu, Fisher [1 ]
Luc Van Gool [1 ]
机构
[1] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
关键词
D O I
10.1109/CVPR52688.2022.00851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose Probabilistic Warp Consistency, a weakly-supervised learning objective for semantic matching. Our approach directly supervises the dense matching scores predicted by the network, encoded as a conditional probability distribution. We first construct an image triplet by applying a known warp to one of the images in a pair depicting different instances of the same object class. Our probabilistic learning objectives are then derived using the constraints arising from the resulting image triplet. We further account for occlusion and background clutter present in real image pairs by extending our probabilistic output space with a learnable unmatched state. To supervise it, we design an objective between image pairs depicting different object classes. We validate our method by applying it to four recent semantic matching architectures. Our weakly-supervised approach sets a new state-of-the-art on four challenging semantic matching benchmarks. Lastly, we demonstrate that our objective also brings substantial improvements in the strongly-supervised regime, when combined with keypoint annotations.
引用
收藏
页码:8698 / 8708
页数:11
相关论文
共 50 条
  • [31] Predicting Segmentation "Easiness" from the Consistency for Weakly-Supervised Segmentation
    Shimoda, Wataru
    Yanai, Keiji
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 292 - 297
  • [32] Boosted MIML method for weakly-supervised image semantic segmentation
    Liu, Yang
    Li, Zechao
    Liu, Jing
    Lu, Hanqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (02) : 543 - 559
  • [33] Semantic-Transferable Weakly-Supervised Endoscopic Lesions Segmentation
    Dong, Jiahua
    Cong, Yang
    Sun, Gan
    Hou, Dongdong
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 10711 - 10720
  • [34] Saliency Background Guided Network for Weakly-Supervised Semantic Segmentation
    Bai X.
    Li W.
    Wang W.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (09): : 824 - 835
  • [35] Weakly-supervised semantic segmentation with saliency and incremental supervision updating
    Luo, Wenfeng
    Yang, Meng
    Zheng, Weishi
    PATTERN RECOGNITION, 2021, 115
  • [36] Exclusive Constrained Discriminative Learning for Weakly-Supervised Semantic Segmentation
    Ying, Peng
    Liu, Jing
    Lu, Hanqing
    Ma, Songde
    MM'15: PROCEEDINGS OF THE 2015 ACM MULTIMEDIA CONFERENCE, 2015, : 1251 - 1254
  • [37] WeClick: Weakly-Supervised Video Semantic Segmentation with Click Annotations
    Liu, Peidong
    He, Zibin
    Yan, Xiyu
    Jiang, Yong
    Xia, Shu-Tao
    Zheng, Feng
    Hu, Maowei
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2995 - 3004
  • [38] Weakly-supervised Semantic Guided Hashing for Social Image Retrieval
    Zechao Li
    Jinhui Tang
    Liyan Zhang
    Jian Yang
    International Journal of Computer Vision, 2020, 128 : 2265 - 2278
  • [39] Weakly-supervised Semantic Segmentation in Cityscape via Hyperspectral Image
    Huang, Yuxing
    Shen, Qiu
    Fu, Ying
    You, Shaodi
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1117 - 1126
  • [40] Weakly-supervised Incremental learning for Semantic segmentation with Class Hierarchy
    Kim, Hyoseo
    Choe, Junsuk
    PATTERN RECOGNITION LETTERS, 2024, 182 : 31 - 38