Semantic-Transferable Weakly-Supervised Endoscopic Lesions Segmentation

被引:37
|
作者
Dong, Jiahua [1 ,2 ,3 ]
Cong, Yang [1 ,2 ]
Sun, Gan [1 ,2 ,3 ]
Hou, Dongdong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110016, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
BREAST-LESIONS; DIAGNOSIS; NETWORK;
D O I
10.1109/ICCV.2019.01081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly-supervised learning under image-level labels supervision has been widely applied to semantic segmentation of medical lesions regions. However, 1) most existing models rely on effective constraints to explore the internal representation of lesions, which only produces inaccurate and coarse lesions regions; 2) they ignore the strong probabilistic dependencies between target lesions dataset (e.g., enteroscopy images) and well-to-annotated source diseases dataset (e.g., gastroscope images). To better utilize these dependencies, we present a new semantic lesions representation transfer model for weakly-supervised endoscopic lesions segmentation, which can exploit useful knowledge from relevant fully-labeled diseases segmentation task to enhance the performance of target weakly-labeled lesions segmentation task. More specifically, a pseudo label generator is proposed to leverage seed information to generate highly-confident pseudo pixel labels by incorporating class balance and super-pixel spatial prior. It can iteratively include more hard-to-transfer samples from weakly-labeled target dataset into training set. Afterwards, dynamically-searched feature centroids for same class among different datasets are aligned by accumulating previously-learned features. Meanwhile, adversarial learning is also employed in this paper, to narrow the gap between the lesions among different datasets in output space. Finally, we build a new medical endoscopic dataset with 3659 images collected from more than 1100 volunteers. Extensive experiments on our collected dataset and several benchmark datasets validate the effectiveness of our model.
引用
收藏
页码:10711 / 10720
页数:10
相关论文
共 50 条
  • [1] A Weakly-Supervised Approach for Semantic Segmentation
    Feng, Yanqing
    Wang, Lunwen
    [J]. PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 2311 - 2314
  • [2] Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions Segmentation
    Dong, Jiahua
    Cong, Yang
    Sun, Gan
    Yang, Yunsheng
    Xu, Xiaowei
    Ding, Zhengming
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (05) : 2020 - 2033
  • [3] Token Contrast for Weakly-Supervised Semantic Segmentation
    Ru, Lixiang
    Zheng, Hehang
    Zhan, Yibing
    Du, Bo
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3093 - 3102
  • [4] Rethinking CAM in Weakly-Supervised Semantic Segmentation
    Song, Yuqi
    Li, Xiaojie
    Shi, Canghong
    Feng, Shihao
    Wang, Xin
    Luo, Yong
    Xi, Wu
    [J]. IEEE ACCESS, 2022, 10 : 126440 - 126450
  • [5] Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation
    Kim, Beomyoung
    Han, Sangeun
    Kim, Junmo
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1754 - 1761
  • [6] Weakly-Supervised Dual Clustering for Image Semantic Segmentation
    Liu, Yang
    Liu, Jing
    Li, Zechao
    Tang, Jinhui
    Lu, Hanqing
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 2075 - 2082
  • [7] Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning
    Xiang Wang
    Sifei Liu
    Huimin Ma
    Ming-Hsuan Yang
    [J]. International Journal of Computer Vision, 2020, 128 : 1736 - 1749
  • [8] Weakly-Supervised Semantic Segmentation Network With Iterative dCRF
    Li, Yujie
    Sun, Jiaxing
    Li, Yun
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 25419 - 25426
  • [9] Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning
    Wang, Xiang
    Liu, Sifei
    Ma, Huimin
    Yang, Ming-Hsuan
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (06) : 1736 - 1749
  • [10] Learning Visual Words for Weakly-Supervised Semantic Segmentation
    Ru, Lixiang
    Du, Bo
    Wu, Chen
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 982 - 988