Finite element basis functions for nested meshes of nonuniform refinement level

被引:10
|
作者
Hill, V [1 ]
Farle, O [1 ]
Dyczij-Edlinger, R [1 ]
机构
[1] Univ Saarland, Dept Elect Engn, Lehrstuhl Theoret Elektrotech, D-66123 Saarbrucken, Germany
关键词
edge and facet elements; electromagnetic fields; finite element methods;
D O I
10.1109/TMAG.2004.825149
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a systematic methodology for the construction of hanging variables to connect finite elements of unequal refinement levels within a nested tetrahedral mesh. While conventional refinement schemes introduce irregular elements at such interfaces which must be removed when the mesh is further refined, the suggested approach keeps the discretization perfectly nested. Thanks to enhanced regularity, mesh-based methods such as refinement algorithms or intergrid transfer operators for use in multigrid solvers can be implemented in a much simpler fashion. This paper covers H-1 and H(curl) basis functions for triangular or tetrahedral elements.
引用
收藏
页码:981 / 984
页数:4
相关论文
共 50 条
  • [21] The finite volume element method with quadratic basis functions
    Liebau, F
    [J]. COMPUTING, 1996, 57 (04) : 281 - 299
  • [22] Decohesion finite element with enriched basis functions for delamination
    Guiamatsia, I.
    Ankersen, J. K.
    Davies, G. A. O.
    Iannucci, L.
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (15-16) : 2616 - 2624
  • [23] Basis Functions With Divergence Constraints for the Finite Element Method
    Pinciuc, C. M.
    Konrad, A.
    Lavers, J. D.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (04)
  • [24] Basis Functions for Divergence Constraints in the Finite Element Method
    Pinciuc, Chris M.
    Konrad, Adalbert
    Lavers, John Douglas
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3421 - 3424
  • [25] Superconvergence Error Estimate of a Finite Element Method on Nonuniform Time Meshes for Reaction–Subdiffusion Equations
    Jincheng Ren
    Hong-lin Liao
    Zhimin Zhang
    [J]. Journal of Scientific Computing, 2020, 84
  • [26] Wavelets on Nonuniform Triangular Meshes for Fast Basis Transform
    Ambrozkiewicz, Mikolaj
    Jacob, Arne F.
    [J]. 18TH INTERNATIONAL CONFERENCE ON MICROWAVES, RADAR AND WIRELESS COMMUNICATIONS (MIKON-2010), VOL 1 AND VOL 2, 2010,
  • [27] AN ALGORITHM FOR ADAPTIVE REFINEMENT OF TRIANGULAR ELEMENT MESHES
    NAMBIAR, RV
    VALERA, RS
    LAWRENCE, KL
    MORGAN, RB
    AMIL, D
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (03) : 499 - 509
  • [28] Investigation of the efficiency of the multigrid method for finite element electromagnetic field computations using nested meshes
    Cingoski, V
    Tsubota, K
    Yamashita, H
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1999, 35 (05) : 3751 - 3753
  • [29] SIMPLE ALGORITHM FOR ADAPTIVE REFINEMENT OF 3-DIMENSIONAL FINITE-ELEMENT TETRAHEDRAL MESHES
    MUTHUKRISHNAN, SN
    SHIAKOLAS, PS
    NAMBIAR, RV
    LAWRENCE, KL
    [J]. AIAA JOURNAL, 1995, 33 (05) : 928 - 932
  • [30] Octasection-based refinement of finite element approximations of tetrahedral meshes that guarantees shape quality
    Endres, L
    Krysl, P
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 59 (01) : 69 - 82