On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion

被引:6
|
作者
Lim, Soon Hoe [1 ,2 ]
Wehr, Jan [1 ,2 ]
Lampo, Aniello [3 ]
Angel Garcia-March, Miguel [3 ]
Lewenstein, Maciej [3 ,4 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona, Spain
[4] Passeig Lluis Co 23, ICREA, Barcelona 08010, Spain
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Quantum Brownian motion; Heisenberg-Langevin equation; Small mass limit; Smoluchowski-Kramers limit; Noise-induced drifts; Quantum stochastic calculus; STOCHASTIC DIFFERENTIAL-EQUATIONS; ADIABATIC ELIMINATION; LANGEVIN EQUATION; DYNAMICS; NOISE; FIELD; MODEL;
D O I
10.1007/s10955-017-1907-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the small mass limit (or: the Smoluchowski-Kramers limit) of a class of quantum Brownian motions with inhomogeneous damping and diffusion. For Ohmic bath spectral density with a Lorentz-Drude cutoff, we derive the Heisenberg-Langevin equations for the particle's observables using a quantum stochastic calculus approach. We set the mass of the particle to equal , the reduced Planck constant to equal and the cutoff frequency to equal , where and are positive constants, so that the particle's de Broglie wavelength and the largest energy scale of the bath are fixed as . We study the limit as of the rescaled model and derive a limiting equation for the (slow) particle's position variable. We find that the limiting equation contains several drift correction terms, the quantum noise-induced drifts, including terms of purely quantum nature, with no classical counterparts.
引用
收藏
页码:351 / 377
页数:27
相关论文
共 50 条
  • [1] On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion
    Soon Hoe Lim
    Jan Wehr
    Aniello Lampo
    Miguel Ángel García-March
    Maciej Lewenstein
    Journal of Statistical Physics, 2018, 170 : 351 - 377
  • [2] Quantum Brownian motion with inhomogeneous damping and diffusion
    Massignan, Pietro
    Lampo, Aniello
    Wehr, Jan
    Lewenstein, Maciej
    PHYSICAL REVIEW A, 2015, 91 (03)
  • [3] Generalized diffusion of quantum Brownian motion
    Colmenares, Pedro J.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [4] QUANTUM BROWNIAN-MOTION AND CLASSICAL DIFFUSION
    TSEKOV, R
    VAYSSILOV, GN
    CHEMICAL PHYSICS LETTERS, 1992, 195 (04) : 423 - 426
  • [5] Limit Theorems for the Rightmost Particle in the Locally Inhomogeneous Branching Brownian Motion
    Yasuhito Nishimori
    Journal of Theoretical Probability, 2025, 38 (2)
  • [6] QUANTUM BROWNIAN-MOTION AND ITS CLASSICAL LIMIT
    AMBEGAOKAR, V
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1991, 95 (03): : 400 - 404
  • [7] Diffusion limit of Levy-Lorentz gas is Brownian motion
    Magdziarz, Marcin
    Szczotka, Wladyslaw
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 60 : 100 - 106
  • [8] Overdamped limit and inverse-friction expansion for Brownian motion in an inhomogeneous medium
    Durang, Xavier
    Kwon, Chulan
    Park, Hyunggyu
    PHYSICAL REVIEW E, 2015, 91 (06):
  • [9] Anomalous diffusion in quantum Brownian motion with colored noise
    Ford, GW
    O'Connell, RF
    PHYSICAL REVIEW A, 2006, 73 (03):
  • [10] Brownian motion in inhomogeneous suspensions
    Yang, Mingcheng
    Ripoll, Marisol
    PHYSICAL REVIEW E, 2013, 87 (06):