On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion

被引:6
|
作者
Lim, Soon Hoe [1 ,2 ]
Wehr, Jan [1 ,2 ]
Lampo, Aniello [3 ]
Angel Garcia-March, Miguel [3 ]
Lewenstein, Maciej [3 ,4 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona, Spain
[4] Passeig Lluis Co 23, ICREA, Barcelona 08010, Spain
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Quantum Brownian motion; Heisenberg-Langevin equation; Small mass limit; Smoluchowski-Kramers limit; Noise-induced drifts; Quantum stochastic calculus; STOCHASTIC DIFFERENTIAL-EQUATIONS; ADIABATIC ELIMINATION; LANGEVIN EQUATION; DYNAMICS; NOISE; FIELD; MODEL;
D O I
10.1007/s10955-017-1907-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the small mass limit (or: the Smoluchowski-Kramers limit) of a class of quantum Brownian motions with inhomogeneous damping and diffusion. For Ohmic bath spectral density with a Lorentz-Drude cutoff, we derive the Heisenberg-Langevin equations for the particle's observables using a quantum stochastic calculus approach. We set the mass of the particle to equal , the reduced Planck constant to equal and the cutoff frequency to equal , where and are positive constants, so that the particle's de Broglie wavelength and the largest energy scale of the bath are fixed as . We study the limit as of the rescaled model and derive a limiting equation for the (slow) particle's position variable. We find that the limiting equation contains several drift correction terms, the quantum noise-induced drifts, including terms of purely quantum nature, with no classical counterparts.
引用
收藏
页码:351 / 377
页数:27
相关论文
共 50 条
  • [31] BROWNIAN-MOTION IN A MEDIUM WITH INHOMOGENEOUS TEMPERATURE
    WIDDER, ME
    TITULAER, UM
    PHYSICA A, 1989, 154 (03): : 452 - 466
  • [32] Slowdown in branching Brownian motion with inhomogeneous variance
    Maillard, Pascal
    Zeitouni, Ofer
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (03): : 1144 - 1160
  • [33] Branching Brownian motion with an inhomogeneous breeding potential
    Harris, J. W.
    Harris, S. C.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 793 - 801
  • [34] Slowdown for Time Inhomogeneous Branching Brownian Motion
    Ming Fang
    Ofer Zeitouni
    Journal of Statistical Physics, 2012, 149 : 1 - 9
  • [35] Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
    Bodrova, Anna S.
    Chechkin, Aleksei V.
    Cherstvy, Andrey G.
    Safdari, Hadiseh
    Sokolov, Igor M.
    Metzler, Ralf
    SCIENTIFIC REPORTS, 2016, 6
  • [36] Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
    Anna S. Bodrova
    Aleksei V. Chechkin
    Andrey G. Cherstvy
    Hadiseh Safdari
    Igor M. Sokolov
    Ralf Metzler
    Scientific Reports, 6
  • [37] BROWNIAN TYPE OF MOTION OF A RANDOMLY KICKED PARTICLE FAR FROM AND CLOSE TO THE DIFFUSION LIMIT
    BARKAI, E
    FLEUROV, V
    PHYSICAL REVIEW E, 1995, 52 (02): : 1558 - 1570
  • [38] Inhomogeneous quantum diffusion
    Storchak, V
    Brewer, JH
    Morris, GD
    PHYSICAL REVIEW B, 1996, 53 (17): : 11300 - 11303
  • [39] DAMPING OF BROWNIAN-MOTION BY COLD LOAD
    HIRAKAWA, H
    HIRAMATSU, S
    OGAWA, Y
    PHYSICS LETTERS A, 1977, 63 (03) : 199 - 202
  • [40] Brownian motion: the quantum perspective
    Vacchini, B
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2001, 56 (1-2): : 230 - 233