On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion

被引:6
|
作者
Lim, Soon Hoe [1 ,2 ]
Wehr, Jan [1 ,2 ]
Lampo, Aniello [3 ]
Angel Garcia-March, Miguel [3 ]
Lewenstein, Maciej [3 ,4 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona, Spain
[4] Passeig Lluis Co 23, ICREA, Barcelona 08010, Spain
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Quantum Brownian motion; Heisenberg-Langevin equation; Small mass limit; Smoluchowski-Kramers limit; Noise-induced drifts; Quantum stochastic calculus; STOCHASTIC DIFFERENTIAL-EQUATIONS; ADIABATIC ELIMINATION; LANGEVIN EQUATION; DYNAMICS; NOISE; FIELD; MODEL;
D O I
10.1007/s10955-017-1907-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the small mass limit (or: the Smoluchowski-Kramers limit) of a class of quantum Brownian motions with inhomogeneous damping and diffusion. For Ohmic bath spectral density with a Lorentz-Drude cutoff, we derive the Heisenberg-Langevin equations for the particle's observables using a quantum stochastic calculus approach. We set the mass of the particle to equal , the reduced Planck constant to equal and the cutoff frequency to equal , where and are positive constants, so that the particle's de Broglie wavelength and the largest energy scale of the bath are fixed as . We study the limit as of the rescaled model and derive a limiting equation for the (slow) particle's position variable. We find that the limiting equation contains several drift correction terms, the quantum noise-induced drifts, including terms of purely quantum nature, with no classical counterparts.
引用
收藏
页码:351 / 377
页数:27
相关论文
共 50 条
  • [41] QUANTUM BROWNIAN-MOTION
    GRABERT, H
    TALKNER, P
    HELVETICA PHYSICA ACTA, 1983, 56 (1-3): : 797 - 802
  • [42] Brownian motion of a quantum particle
    Kadomtsev, BB
    Kadomtsev, MB
    PHYSICS LETTERS A, 1997, 231 (1-2) : 52 - 60
  • [43] QUANTUM BROWNIAN-MOTION
    OPPENHEIM, I
    ROMEROROCHIN, V
    PHYSICA A, 1987, 147 (1-2): : 184 - 202
  • [44] BROWNIAN MOTION OF A QUANTUM OSCILLATOR
    SCHWINGER, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (03) : 407 - &
  • [45] BROWNIAN MOTION OF A QUANTUM OSCILLATOR
    AGARWAL, GS
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 4 (02): : 739 - +
  • [46] BROWNIAN MOTION WITH QUANTUM DYNAMICS
    PAPADOPOULOS, GJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1973, 6 (10): : 1479 - 1497
  • [47] QUANTUM BROWNIAN-MOTION
    GRABERT, H
    TALKNER, P
    PHYSICAL REVIEW LETTERS, 1983, 50 (18) : 1335 - 1338
  • [48] Quantum Brownian motion for magnets
    Anders, J.
    Sait, C. R. J.
    Horsley, S. A. R.
    NEW JOURNAL OF PHYSICS, 2022, 24 (03):
  • [49] Universality of quantum Brownian motion
    Lutz, E
    Weidenmüller, HA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 267 (3-4) : 354 - 374
  • [50] Towards the quantum Brownian motion
    Erdos, Laszlo
    Salmhofer, Manfred
    Yau, Horng-Tzer
    MATHEMATICAL PHYSICS OF QUANTUM MECHANICS: SELECTED AND REFEREED LECTURES FROM QMATH9, 2006, 690 : 233 - +