k-Fibonacci Cubes: A Family of Subgraphs of Fibonacci Cubes

被引:7
|
作者
Egecioglu, Omer [1 ]
Saygi, Elif [2 ]
Saygi, Zulfukar [3 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Hacettepe Univ, Dept Math & Sci Educ, TR-06800 Ankara, Turkey
[3] TOBB Univ Econ & Technol, Dept Math, TR-06560 Ankara, Turkey
关键词
Hypercube; Fibonacci cube; Fibonacci number; ENUMERATIVE PROPERTIES; DISJOINT HYPERCUBES; LUCAS;
D O I
10.1142/S0129054120500318
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Hypercubes and Fibonacci cubes are classical models for interconnection networks with interesting graph theoretic properties. We consider k-Fibonacci cubes, which we obtain as subgraphs of Fibonacci cubes by eliminating certain edges during the fundamental recursion phase of their construction. These graphs have the same number of vertices as Fibonacci cubes, but their edge sets are determined by a parameter k. We obtain properties of k-Fibonacci cubes including the number of edges, the average degree of a vertex, the degree sequence and the number of hypercubes they contain.
引用
收藏
页码:639 / 661
页数:23
相关论文
共 50 条
  • [32] Fast Recognition of Fibonacci Cubes
    Andrej Taranenko
    Aleksander Vesel
    [J]. Algorithmica, 2007, 49 : 81 - 93
  • [33] On the k-Fibonacci words
    Ramirez, Jose L.
    Rubiano, Gustavo N.
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2013, 5 (02) : 212 - 226
  • [34] The Larger Bound on the Domination Number of Fibonacci Cubes and Lucas Cubes
    Ren, Shengzhang
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [35] Edge-counting vectors, Fibonacci cubes, and Fibonacci triangle
    Klavzar, Sandi
    Peterin, Iztok
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2007, 71 (3-4): : 267 - 278
  • [36] Euler numbers and diametral paths in Fibonacci cubes, Lucas cubes and alternate Lucas cubes
    Egecioglu, Omer
    Saygi, Elif
    Saygi, Zulfukar
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (03)
  • [37] On isomorphism classes of generalized Fibonacci cubes
    Azarija, Jernej
    Klavzar, Sandi
    Lee, Jaehun
    Pantone, Jay
    Rho, Yoomi
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 372 - 379
  • [38] The Mostar Index of Fibonacci and Lucas Cubes
    Egecioglu, Omer
    Saygi, Elif
    Saygi, Zulfukar
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3677 - 3687
  • [39] The degree sequence of Fibonacci and Lucas cubes
    Klavzar, Sandi
    Mollard, Michel
    Petkovsek, Marko
    [J]. DISCRETE MATHEMATICS, 2011, 311 (14) : 1310 - 1322
  • [40] The eccentricity sequences of Fibonacci and Lucas cubes
    Castro, Aline
    Mollard, Michel
    [J]. DISCRETE MATHEMATICS, 2012, 312 (05) : 1025 - 1037