Fitting High-Order Zernike Polynomials to Finite Data

被引:0
|
作者
Lewis, Benjamin
Burge, James H.
机构
来源
INTERFEROMETRY XVI: TECHNIQUES AND ANALYSIS | 2012年 / 8493卷
关键词
Zernike polynomials; fitting; finite data; orthogonal; Gram-Schmidt; weight mapping; edge weighting; edge effects;
D O I
10.1117/12.930774
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
While the use of Zernike polynomials to represent simulated or measured data on a grid of points is common, the accuracy of the coefficients can be limited by the non-orthogonality of the functions over the pixelated domains. The Zernike polynomials are defined to be analytically orthogonal over a circular domain, but this breaks down for discrete data. A simple correction is presented that uses a weighted scalar product to determine coefficients. This method preserves the meaning of the Zernike polynomials and allows efficient calculations using an inner product. The algorithm for defining the weighting function is provided, and simulations are included that demonstrate nearly an order of magnitude improvement in accuracy when the new weighted scalar product is used.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Wavefront fitting and comparison of camera aberrations using Zernike circle polynomials
    Singh, Sonam
    Ganotra, Dinesh
    OPTIK, 2013, 124 (16): : 2379 - 2386
  • [32] Comparing Computer Experiments for Fitting High-Order Polynomial Metamodels
    Johnson, Rachel T.
    Montgomery, Douglas C.
    Jones, Bradley
    Parker, Peter A.
    JOURNAL OF QUALITY TECHNOLOGY, 2010, 42 (01) : 86 - 102
  • [33] Finite-time stabilisation for high-order nonlinear systems with low-order and high-order nonlinearities
    Zhang, Kemei
    Zhang, Xing-Hui
    INTERNATIONAL JOURNAL OF CONTROL, 2015, 88 (08) : 1576 - 1585
  • [34] Recurrences for Quadrilateral High-Order Finite Elements
    Beuchler, Sven
    Haubold, Tim
    Pillwein, Veronika
    MATHEMATICS IN COMPUTER SCIENCE, 2022, 16 (04)
  • [35] HIGH-ORDER CURVED FINITE-ELEMENTS
    WACHSPRESS, EL
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1981, 17 (05) : 735 - 745
  • [36] Recurrences for Quadrilateral High-Order Finite Elements
    Sven Beuchler
    Tim Haubold
    Veronika Pillwein
    Mathematics in Computer Science, 2022, 16
  • [37] On high-order conservative finite element methods
    Abreu, Eduardo
    Diaz, Ciro
    Galvis, Juan
    Sarkis, Marcus
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (06) : 1852 - 1867
  • [38] On high-order perturbative calculations at finite density
    Ghisoiu, Ioan
    Gorda, Tyler
    Kurkela, Aleksi
    Romatschke, Paul
    Sappi, Saga
    Vuorinen, Aleksi
    NUCLEAR PHYSICS B, 2017, 915 : 102 - 118
  • [39] Efficient visualization of high-order finite elements
    Remacle, Jean-Francois
    Chevaugeon, Nicolas
    Marchandise, Emilie
    Geuzaine, Christophe
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (04) : 750 - 771
  • [40] Orthogonalization in high-order finite element method
    Jaskowiec, Jan
    Plucinski, Piotr
    COMPUTERS & STRUCTURES, 2025, 311