On high-order conservative finite element methods

被引:4
|
作者
Abreu, Eduardo [1 ]
Diaz, Ciro [1 ]
Galvis, Juan [2 ]
Sarkis, Marcus [3 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, BR-13083970 Campinas, SP, Brazil
[2] Univ Nacl Colombia, Dept Matemat, Bogota, DC, Colombia
[3] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
基金
美国国家科学基金会; 巴西圣保罗研究基金会;
关键词
Conservative high-order FEM; Darcy flow; Porous media; High contrast heterogeneity; Elliptic-Poisson problem; 2-PHASE FLOW; POROUS-MEDIA;
D O I
10.1016/j.camwa.2017.10.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe and analyze a volumetric and residual-based Lagrange multipliers saddle point reformulation of the standard high-order finite method, to impose conservation of mass constraints for simulating the pressure equation on two dimensional convex polygons, with sufficiently smooth solution and mobility phase. We establish high-order a priori error estimates with locally conservative fluxes and numerical results are presented that confirm the theoretical results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1852 / 1867
页数:16
相关论文
共 50 条
  • [1] High-order finite element methods for acoustic problems
    Harari, I
    Avraham, D
    [J]. JOURNAL OF COMPUTATIONAL ACOUSTICS, 1997, 5 (01) : 33 - 51
  • [2] Superconvergence in high-order Galerkin finite element methods
    Qun, Lin
    Junming, Zhou
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) : 3779 - 3784
  • [3] Deep ReLU networks and high-order finite element methods
    Opschoor, Joost A. A.
    Petersen, Philipp C.
    Schwab, Christoph
    [J]. ANALYSIS AND APPLICATIONS, 2020, 18 (05) : 715 - 770
  • [4] HIGH-ORDER CURVILINEAR FINITE ELEMENT METHODS FOR LAGRANGIAN HYDRODYNAMICS
    Dobrev, Veselin A.
    Kolev, Tzanio V.
    Rieben, Robert N.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : B606 - B641
  • [5] High-order finite element methods for parallel atmospheric modeling
    St Cyr, A
    Thomas, SJ
    [J]. COMPUTATIONAL SCIENCE - ICCS 2005, PT 1, PROCEEDINGS, 2005, 3514 : 256 - 262
  • [6] Use of discontinuity factors in high-order finite element methods
    Vidal-Ferrandiz, A.
    Gonzalez-Pintor, S.
    Ginestar, D.
    Verdu, G.
    Asadzadeh, M.
    Demaziere, C.
    [J]. ANNALS OF NUCLEAR ENERGY, 2016, 87 : 728 - 738
  • [7] Efficient exascale discretizations: High-order finite element methods
    Kolev, Tzanio
    Fischer, Paul
    Min, Misun
    Dongarra, Jack
    Brown, Jed
    Dobrev, Veselin
    Warburton, Tim
    Tomov, Stanimire
    Shephard, Mark S.
    Abdelfattah, Ahmad
    Barra, Valeria
    Beams, Natalie
    Camier, Jean-Sylvain
    Chalmers, Noel
    Dudouit, Yohann
    Karakus, Ali
    Karlin, Ian
    Kerkemeier, Stefan
    Lan, Yu-Hsiang
    Medina, David
    Merzari, Elia
    Obabko, Aleksandr
    Pazner, Will
    Rathnayake, Thilina
    Smith, Cameron W.
    Spies, Lukas
    Swirydowicz, Kasia
    Thompson, Jeremy
    Tomboulides, Ananias
    Tomov, Vladimir
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2021, 35 (06): : 527 - 552
  • [8] High-order finite element methods for cardiac monodomain simulations
    Vincent, Kevin P.
    Gonzales, MatthewJ.
    Gillette, AndrewK.
    Villongco, Christopher T.
    Pezzuto, Simone
    Omens, Jeffrey H.
    Holst, Michael J.
    McCulloch, Andrew D.
    [J]. FRONTIERS IN PHYSIOLOGY, 2015, 6
  • [9] Piecewise bilinear preconditioning of high-order finite element methods
    Kim, Sang Dong
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 26 : 228 - 242
  • [10] High-order extended finite element methods for solving interface problems
    Xiao, Yuanming
    Xu, Jinchao
    Wang, Fei
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 364