Resource-Efficient Quantum Computing by Breaking Abstractions

被引:22
|
作者
Shi, Yunong [1 ]
Gokhale, Pranav [2 ]
Murali, Prakash [3 ]
Baker, Jonathan M. [2 ]
Duckering, Casey [2 ]
Ding, Yongshan [2 ]
Brown, Natalie C. [4 ]
Chamberland, Christopher [5 ,6 ]
Javadi-Abhari, Ali [7 ]
Cross, Andrew W. [7 ]
Schuster, David, I [1 ]
Brown, Kenneth R. [4 ]
Martonosi, Margaret [3 ]
Chong, Frederic T. [2 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[5] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[6] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[7] IBM Thomas J Watson Res Ctr, Ossining, NY 10598 USA
基金
美国国家科学基金会;
关键词
Qubit; Logic gates; Hardware; Ions; Optimization; Computer architecture; Quantum computing (QC); software design; system analysis and design;
D O I
10.1109/JPROC.2020.2994765
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Building a quantum computer that surpasses the computational power of its classical counterpart is a great engineering challenge. Quantum software optimizations can provide an accelerated pathway to the first generation of quantum computing (QC) applications that might save years of engineering effort. Current quantum software stacks follow a layered approach similar to the stack of classical computers, which was designed to manage the complexity. In this review, we point out that greater efficiency of QC systems can be achieved by breaking the abstractions between these layers. We review several works along this line, including two hardware-aware compilation optimizations that break the quantum instruction set architecture (ISA) abstraction and two error-correction/information-processing schemes that break the qubit abstraction. Last, we discuss several possible future directions.
引用
收藏
页码:1353 / 1370
页数:18
相关论文
共 50 条
  • [21] Implementation of resource-efficient fetal echocardiography detection algorithms in edge computing
    Zhu, Yuchen
    Gao, Yi
    Wang, Meng
    Li, Mei
    Wang, Kun
    PLOS ONE, 2024, 19 (09):
  • [22] A Resource-Efficient Integrity Monitoring and Response Approach for Cloud Computing Environment
    Gupta, Sanchika
    Kumar, Padam
    Abraham, Ajith
    PATTERN ANALYSIS, INTELLIGENT SECURITY AND THE INTERNET OF THINGS, 2015, 355 : 335 - 349
  • [23] Resource-efficient quantum key distribution with integrated silicon photonics
    Wei, Kejin
    Hu, Xiao
    Du, Yongqiang
    Hua, Xin
    Zhao, Zhengeng
    Chen, Ye
    Huang, Chunfeng
    Xiao, Xi
    PHOTONICS RESEARCH, 2023, 11 (08) : 1364 - 1372
  • [24] Resource-Efficient DNN Inference With Early Exiting in Serverless Edge Computing
    Guo, Xiaolin
    Dong, Fang
    Shen, Dian
    Huang, Zhaowu
    Zhang, Jinghui
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3650 - 3666
  • [25] Software: Resource-efficient Development
    不详
    ATP MAGAZINE, 2021, (6-7): : 10 - 10
  • [26] GOLGI: Performance-Aware, Resource-Efficient Function Scheduling for Serverless Computing
    Li, Suyi
    Wang, Wei
    Yang, Jun
    Chen, Guangzhen
    Lu, Daohe
    PROCEEDINGS OF THE 2023 ACM SYMPOSIUM ON CLOUD COMPUTING, SOCC 2023, 2023, : 32 - 47
  • [27] Maxwell's Demon in Tail-tolerant, Resource-efficient Serverless Computing
    Zhang, Huanyu
    Huang, Wenhao
    Zhao, Laiping
    Li, Keqiu
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 762 - 769
  • [28] Resource-efficient adaptive Bayesian tracking of magnetic fields with a quantum sensor
    Craigie, K.
    Gauger, E. M.
    Altmann, Y.
    Bonato, C.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (19)
  • [29] Resource-efficient handling systems
    Brett, T.
    Heinrich, M.
    Seliger, G.
    WT Werkstattstechnik, 2012, 102 (09): : 603 - 608
  • [30] RESOURCE-EFFICIENT SEPARATION TRANSFORMER
    Della Libera, Luca
    Subakan, Cem
    Ravanelli, Mirco
    Cornell, Samuele
    Lepoutre, Frederic
    Grondin, Francois
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 761 - 765