Implementation of resource-efficient fetal echocardiography detection algorithms in edge computing

被引:0
|
作者
Zhu, Yuchen [1 ]
Gao, Yi [2 ]
Wang, Meng [1 ]
Li, Mei [1 ]
Wang, Kun [3 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
[2] Shijiazhuang Obstet & Gynecol Hosp, Shijiazhuang, Peoples R China
[3] Hebei Matern Hosp, Shijiazhuang, Hebei, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
ARTIFICIAL-INTELLIGENCE;
D O I
10.1371/journal.pone.0305250
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent breakthroughs in medical AI have proven the effectiveness of deep learning in fetal echocardiography. However, the limited processing power of edge devices hinders real-time clinical application. We aim to pioneer the future of intelligent echocardiography equipment by enabling real-time recognition and tracking in fetal echocardiography, ultimately assisting medical professionals in their practice. Our study presents the YOLOv5s_emn (Extremely Mini Network) Series, a collection of resource-efficient algorithms for fetal echocardiography detection. Built on the YOLOv5s architecture, these models, through backbone substitution, pruning, and inference optimization, while maintaining high accuracy, the models achieve a significant reduction in size and number of parameters, amounting to only 5%-19% of YOLOv5s. Tested on the NVIDIA Jetson Nano, the YOLOv5s_emn Series demonstrated superior inference speed, being 52.8-125.0 milliseconds per frame(ms/f) faster than YOLOv5s, showcasing their potential for efficient real-time detection in embedded systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] ThriftyEdge: Resource-Efficient Edge Computing for Intelligent IoT Applications
    Chen, Xu
    Shi, Qian
    Yang, Lei
    Xu, Jie
    IEEE NETWORK, 2018, 32 (01): : 61 - 65
  • [2] Resource-Efficient Federated Learning with Hierarchical Aggregation in Edge Computing
    Wang, Zhiyuan
    Xu, Hongli
    Liu, Jianchun
    Huang, He
    Qiao, Chunming
    Zhao, Yangming
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2021), 2021,
  • [3] Toward Resource-Efficient Federated Learning in Mobile Edge Computing
    Yu, Rong
    Li, Peichun
    IEEE NETWORK, 2021, 35 (01): : 148 - 155
  • [4] Resource-efficient Parallel Split Learning in Heterogeneous Edge Computing
    Zhang, Mingjin
    Cao, Jiannong
    Sahni, Yuvraj
    Chen, Xiangchun
    Jiang, Shan
    2024 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2024, : 794 - 798
  • [5] DEAN: A Lightweight and Resource-efficient Blockchain Protocol for Reliable Edge Computing
    Al-Mamun, Ahdullah
    Shen, Haoting
    Zhao, Dongfang
    2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS 2022), 2022, : 1261 - 1271
  • [6] Resource-Efficient DNN Inference With Early Exiting in Serverless Edge Computing
    Guo, Xiaolin
    Dong, Fang
    Shen, Dian
    Huang, Zhaowu
    Zhang, Jinghui
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3650 - 3666
  • [7] Resource-Efficient Computing in Wearable Systems
    Pedram, Mahdi
    Rofouei, Mahsan
    Fraternali, Francesco
    Ashari, Zhila Esna
    Ghasemzadeh, Hassan
    2019 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2019), 2019, : 150 - 155
  • [8] Autonomous Lifecycle Management for Resource-Efficient Workload Orchestration for Green Edge Computing
    Guim, Francesc
    Metsch, Thijs
    Moustafa, Hassnaa
    Verrall, Timothy
    Carrera, David
    Cadenelli, Nicola
    Chen, Jiang
    Doria, David
    Ghadie, Chadie
    Prats, Raul Gonzalez
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2022, 6 (01): : 571 - 582
  • [9] SCORE: A Resource-Efficient Microservice Orchestration Model Based on Spectral Clustering in Edge Computing
    Li, Ning
    Tan, Yusong
    Wang, Xiaochuan
    Li, Bao
    Luo, Jun
    SERVICE-ORIENTED COMPUTING (ICSOC 2022), 2022, 13740 : 186 - 202
  • [10] Resource-Efficient Quantum Computing by Breaking Abstractions
    Shi, Yunong
    Gokhale, Pranav
    Murali, Prakash
    Baker, Jonathan M.
    Duckering, Casey
    Ding, Yongshan
    Brown, Natalie C.
    Chamberland, Christopher
    Javadi-Abhari, Ali
    Cross, Andrew W.
    Schuster, David, I
    Brown, Kenneth R.
    Martonosi, Margaret
    Chong, Frederic T.
    PROCEEDINGS OF THE IEEE, 2020, 108 (08) : 1353 - 1370