Implementation of resource-efficient fetal echocardiography detection algorithms in edge computing

被引:0
|
作者
Zhu, Yuchen [1 ]
Gao, Yi [2 ]
Wang, Meng [1 ]
Li, Mei [1 ]
Wang, Kun [3 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
[2] Shijiazhuang Obstet & Gynecol Hosp, Shijiazhuang, Peoples R China
[3] Hebei Matern Hosp, Shijiazhuang, Hebei, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
ARTIFICIAL-INTELLIGENCE;
D O I
10.1371/journal.pone.0305250
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent breakthroughs in medical AI have proven the effectiveness of deep learning in fetal echocardiography. However, the limited processing power of edge devices hinders real-time clinical application. We aim to pioneer the future of intelligent echocardiography equipment by enabling real-time recognition and tracking in fetal echocardiography, ultimately assisting medical professionals in their practice. Our study presents the YOLOv5s_emn (Extremely Mini Network) Series, a collection of resource-efficient algorithms for fetal echocardiography detection. Built on the YOLOv5s architecture, these models, through backbone substitution, pruning, and inference optimization, while maintaining high accuracy, the models achieve a significant reduction in size and number of parameters, amounting to only 5%-19% of YOLOv5s. Tested on the NVIDIA Jetson Nano, the YOLOv5s_emn Series demonstrated superior inference speed, being 52.8-125.0 milliseconds per frame(ms/f) faster than YOLOv5s, showcasing their potential for efficient real-time detection in embedded systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Resource-efficient verification of quantum computing using Serfling's bound
    Takeuchi, Yuki
    Mantri, Atul
    Morimae, Tomoyuki
    Mizutani, Akihiro
    Fitzsimons, Joseph F.
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [32] Resource-efficient verification of quantum computing using Serfling’s bound
    Yuki Takeuchi
    Atul Mantri
    Tomoyuki Morimae
    Akihiro Mizutani
    Joseph F. Fitzsimons
    npj Quantum Information, 5
  • [33] A Resource-Efficient Integrity Monitoring and Response Approach for Cloud Computing Environment
    Gupta, Sanchika
    Kumar, Padam
    Abraham, Ajith
    PATTERN ANALYSIS, INTELLIGENT SECURITY AND THE INTERNET OF THINGS, 2015, 355 : 335 - 349
  • [34] Quantized hashing: enabling resource-efficient deep learning models at the edge
    Nazir A.
    Mir R.N.
    Qureshi S.
    International Journal of Information Technology, 2024, 16 (4) : 2353 - 2361
  • [35] A Resource-Efficient Design for a Reversible Floating Point Adder in Quantum Computing
    Trung Duc Nguyen
    Van Meter, Rodney
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2014, 11 (02)
  • [36] Resource-Efficient Synthetic Data Generation for Performance Evaluation in Mobile Edge Computing Over 5G Networks
    Pandey, Chandrasen
    Tiwari, Vaibhav
    Rathore, Rajkumar Singh
    Jhaveri, Rutvij H.
    Roy, Diptendu Sinha
    Selvarajan, Shitharth
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2023, 4 : 1866 - 1878
  • [37] Resource-Efficient Hardware Implementation of Perspective Transformation Based on Central Projection
    Li, Zeying
    Wang, Weijiang
    Xue, Chengbo
    Jiang, Rongkun
    ELECTRONICS, 2022, 11 (09)
  • [38] A Resource-Efficient Binary CNN Implementation for Enabling Contactless IoT Authentication
    Mahmudul Hasan
    Tamzidul Hoque
    Fatemeh Ganji
    Damon Woodard
    Domenic Forte
    Sumaiya Shomaji
    Journal of Hardware and Systems Security, 2024, 8 (3) : 160 - 173
  • [39] Fast and Resource-Efficient Hardware Implementation of Modified Line Segment Detector
    Zhou, Fuqiang
    Cao, Yu
    Wang, Xinming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (11) : 3262 - 3273
  • [40] GOLGI: Performance-Aware, Resource-Efficient Function Scheduling for Serverless Computing
    Li, Suyi
    Wang, Wei
    Yang, Jun
    Chen, Guangzhen
    Lu, Daohe
    PROCEEDINGS OF THE 2023 ACM SYMPOSIUM ON CLOUD COMPUTING, SOCC 2023, 2023, : 32 - 47