Implementation of resource-efficient fetal echocardiography detection algorithms in edge computing

被引:0
|
作者
Zhu, Yuchen [1 ]
Gao, Yi [2 ]
Wang, Meng [1 ]
Li, Mei [1 ]
Wang, Kun [3 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing, Peoples R China
[2] Shijiazhuang Obstet & Gynecol Hosp, Shijiazhuang, Peoples R China
[3] Hebei Matern Hosp, Shijiazhuang, Hebei, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
ARTIFICIAL-INTELLIGENCE;
D O I
10.1371/journal.pone.0305250
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent breakthroughs in medical AI have proven the effectiveness of deep learning in fetal echocardiography. However, the limited processing power of edge devices hinders real-time clinical application. We aim to pioneer the future of intelligent echocardiography equipment by enabling real-time recognition and tracking in fetal echocardiography, ultimately assisting medical professionals in their practice. Our study presents the YOLOv5s_emn (Extremely Mini Network) Series, a collection of resource-efficient algorithms for fetal echocardiography detection. Built on the YOLOv5s architecture, these models, through backbone substitution, pruning, and inference optimization, while maintaining high accuracy, the models achieve a significant reduction in size and number of parameters, amounting to only 5%-19% of YOLOv5s. Tested on the NVIDIA Jetson Nano, the YOLOv5s_emn Series demonstrated superior inference speed, being 52.8-125.0 milliseconds per frame(ms/f) faster than YOLOv5s, showcasing their potential for efficient real-time detection in embedded systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Experimental Resource-Efficient Entanglement Detection
    Saggio, Valeria
    Dimic, Aleksandra
    Greganti, Chiara
    Rozema, Lee A.
    Walther, Philip
    Dakic, Borivoje
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [12] Resource-Efficient Detection of Elephant Rumbles
    Jayasuriya, Namal
    Ranathunga, Tharindu
    Gunawardana, Kasun
    Silva, Chamath
    Kumarasinghe, Prabash
    Sayakkara, Asanka
    Keppitiyagama, Chamath
    De Zoysa, Kasun
    Hewage, Kasun
    Voigt, Thiemo
    PROCEEDINGS OF THE 15TH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS (SENSYS'17), 2017,
  • [13] Resource-Efficient FPGA Architecture of Canny Edge Detector
    Jang, Yunseok
    Mun, Junwon
    Kim, Jaeseok
    2016 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2016, : 299 - 300
  • [14] Resource-efficient Heterogenous Federated Continual Learning on Edge
    Yang, Zhao
    Zhang, Shengbing
    Li, Chuxi
    Wang, Haoyang
    Zhang, Meng
    2024 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2024,
  • [15] Resource-efficient Edge AI solution for predictive maintenance
    Artiushenko, Viktor
    Lang, Sebastian
    Lerez, Christoph
    Reggelin, Tobias
    Hackert-Oschaetzchen, Matthias
    5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023, 2024, 232 : 348 - 357
  • [16] Virtualization Technology Blending for resource-efficient edge clouds
    Valsamas, Polychronis
    Skaperas, Sotiris
    Mamatas, Lefteris
    Contreras, Luis M.
    COMPUTER NETWORKS, 2023, 225
  • [17] ATCN: Resource-efficient Processing of Time Series on Edge
    Baharani, Mohammadreza
    Tabkhi, Hamed
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2022, 21 (05)
  • [18] Resource-Efficient and Privacy-Preserving Edge for AR
    Guo, Tian
    PROCEEDINGS OF THE 2023 WORKSHOP ON EMERGING MULTIMEDIA SYSTEMS, EMS 2023, 2023, : 22 - 27
  • [19] Resource-efficient Algorithms and Systems of Foundation Models: A Survey
    Xu, Mengwei
    Cai, Dongqi
    Yin, Wangsong
    Wang, Shangguang
    Jin, Xin
    Liu, Xuanzhe
    ACM COMPUTING SURVEYS, 2025, 57 (05)
  • [20] Implementation of PRINCE with resource-efficient structures based on FPGAs
    Li, Lang
    Feng, Jingya
    Liu, Botao
    Guo, Ying
    Li, Qiuping
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2021, 22 (11) : 1505 - 1516