Resource-Efficient Quantum Computing by Breaking Abstractions

被引:22
|
作者
Shi, Yunong [1 ]
Gokhale, Pranav [2 ]
Murali, Prakash [3 ]
Baker, Jonathan M. [2 ]
Duckering, Casey [2 ]
Ding, Yongshan [2 ]
Brown, Natalie C. [4 ]
Chamberland, Christopher [5 ,6 ]
Javadi-Abhari, Ali [7 ]
Cross, Andrew W. [7 ]
Schuster, David, I [1 ]
Brown, Kenneth R. [4 ]
Martonosi, Margaret [3 ]
Chong, Frederic T. [2 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[5] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[6] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[7] IBM Thomas J Watson Res Ctr, Ossining, NY 10598 USA
基金
美国国家科学基金会;
关键词
Qubit; Logic gates; Hardware; Ions; Optimization; Computer architecture; Quantum computing (QC); software design; system analysis and design;
D O I
10.1109/JPROC.2020.2994765
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Building a quantum computer that surpasses the computational power of its classical counterpart is a great engineering challenge. Quantum software optimizations can provide an accelerated pathway to the first generation of quantum computing (QC) applications that might save years of engineering effort. Current quantum software stacks follow a layered approach similar to the stack of classical computers, which was designed to manage the complexity. In this review, we point out that greater efficiency of QC systems can be achieved by breaking the abstractions between these layers. We review several works along this line, including two hardware-aware compilation optimizations that break the quantum instruction set architecture (ISA) abstraction and two error-correction/information-processing schemes that break the qubit abstraction. Last, we discuss several possible future directions.
引用
收藏
页码:1353 / 1370
页数:18
相关论文
共 50 条
  • [41] Resource-efficient inference for particle physics
    Rousseau, David
    NATURE MACHINE INTELLIGENCE, 2021, 3 (08) : 656 - 657
  • [42] Resource-Efficient Byzantine Fault Tolerance
    Distler, Tobias
    Cachin, Christian
    Kapitza, Ruediger
    IEEE TRANSACTIONS ON COMPUTERS, 2016, 65 (09) : 2807 - 2819
  • [43] Experimental Resource-Efficient Entanglement Detection
    Saggio, Valeria
    Dimic, Aleksandra
    Greganti, Chiara
    Rozema, Lee A.
    Walther, Philip
    Dakic, Borivoje
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [44] Resource-efficient machining of hard metals
    Kroening, O.
    Herzig, M.
    Schulze, H. -P.
    Hackert-Oschaetzchen, M.
    Kuehn, R.
    Zeidler, H.
    Schubert, A.
    MATERIAL FORMING ESAFORM 2014, 2014, 611-612 : 708 - 714
  • [45] Resource-efficient quantum-classical hybrid algorithm for energy gap evaluation
    Yang, Yongdan
    Li, Ying
    Xu, Xiaosi
    Yuan, Xiao
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [46] Resource-efficient photonic quantum computation with high-dimensional cluster states
    Lib, Ohad
    Bromberg, Yaron
    NATURE PHOTONICS, 2024, 18 (11) : 1218 - 1224
  • [47] The route to resource-efficient novel materials
    Krohns, S.
    Lunkenheimer, P.
    Meissner, S.
    Reller, A.
    Gleich, B.
    Rathgeber, A.
    Gaugler, T.
    Buhl, H. U.
    Sinclair, D. C.
    Loidl, A.
    NATURE MATERIALS, 2011, 10 (12) : 899 - 901
  • [48] Artificial biofilms for resource-efficient biotechnology
    Künstliche Biofilme für die ressourcenschonende Biotechnologie
    1600, Eugen G. Leuze Verlag (108):
  • [49] Resource-efficient inference for particle physics
    David Rousseau
    Nature Machine Intelligence, 2021, 3 : 656 - 657
  • [50] REM: Resource-Efficient Mining for Blockchains
    Zhang, Fan
    Eyal, Ittay
    Escriva, Robert
    Juels, Ari
    van Renesse, Robbert
    PROCEEDINGS OF THE 26TH USENIX SECURITY SYMPOSIUM (USENIX SECURITY '17), 2017, : 1427 - 1444