An algorithm for counting short cycles in bipartite graphs

被引:55
|
作者
Halford, TR [1 ]
Chugg, KM [1 ]
机构
[1] Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA
关键词
bipartite graphs; cycles; girth; graphical models of codes; loops;
D O I
10.1109/TIT.2005.860472
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G = (U boolean OR W, epsilon) be a bipartite graph with disjoint vertex sets U and W, edge set epsilon, and girth g. This correspondence presents an algorithm for counting the number of cycles of length g, g + 2, and g + 4 incident upon every vertex in U boolean OR W. The proposed cycle counting algorithm consists of integer matrix operations and its complexity grows as O(gn(3)) where n. = max(vertical bar U vertical bar, vertical bar W vertical bar).
引用
收藏
页码:287 / 292
页数:6
相关论文
共 50 条
  • [21] Long cycles in unbalanced bipartite graphs
    Chiba, Shuya
    Fujisawa, Jun
    Tsugaki, Masao
    Yamashita, Tomoki
    [J]. DISCRETE MATHEMATICS, 2012, 312 (11) : 1857 - 1862
  • [22] Disjoint hamiltonian cycles in bipartite graphs
    Ferrara, Michael
    Gould, Ronald
    Tansey, Gerard
    Whalen, Thor
    [J]. DISCRETE MATHEMATICS, 2009, 309 (12) : 3811 - 3820
  • [23] Counting shellings of complete bipartite graphs and trees
    Yibo Gao
    Junyao Peng
    [J]. Journal of Algebraic Combinatorics, 2021, 54 : 17 - 37
  • [24] Families of Butterfly Counting Algorithms for Bipartite Graphs
    Acosta, Jay A.
    Low, Tze Meng
    Parikh, Devangi N.
    [J]. 2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2022), 2022, : 304 - 313
  • [25] Counting independent sets in unbalanced bipartite graphs
    Cannon, Sarah
    Perkins, Will
    [J]. PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 1456 - 1466
  • [26] Counting shellings of complete bipartite graphs and trees
    Gao, Yibo
    Peng, Junyao
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (01) : 17 - 37
  • [27] Counting independent sets in unbalanced bipartite graphs
    Cannon, Sarah
    Perkins, Will
    [J]. PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 1456 - 1466
  • [28] The Maximum Spectral Radius of Non-Bipartite Graphs Forbidding Short Odd Cycles
    Li, Yongtao
    Peng, Yuejian
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04): : 1 - 27
  • [29] On the Computational Complexity of Finding Bipartite Graphs with a Small Number of Short Cycles and Large Girth
    Dehghan, Ali
    Banihashemi, Amir H.
    [J]. 2019 IEEE INFORMATION THEORY WORKSHOP (ITW), 2019, : 55 - 59
  • [30] On Computing the Number of Short Cycles in Bipartite Graphs Using the Spectrum of the Directed Edge Matrix
    Dehghan, Ali
    Banihashemi, Amir H.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (10) : 6037 - 6047