An algorithm for counting short cycles in bipartite graphs

被引:55
|
作者
Halford, TR [1 ]
Chugg, KM [1 ]
机构
[1] Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA
关键词
bipartite graphs; cycles; girth; graphical models of codes; loops;
D O I
10.1109/TIT.2005.860472
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G = (U boolean OR W, epsilon) be a bipartite graph with disjoint vertex sets U and W, edge set epsilon, and girth g. This correspondence presents an algorithm for counting the number of cycles of length g, g + 2, and g + 4 incident upon every vertex in U boolean OR W. The proposed cycle counting algorithm consists of integer matrix operations and its complexity grows as O(gn(3)) where n. = max(vertical bar U vertical bar, vertical bar W vertical bar).
引用
收藏
页码:287 / 292
页数:6
相关论文
共 50 条
  • [41] Neighborhood Unions and Hamilton Cycles in Bipartite Graphs
    刘一平
    吴正声
    张雪荣
    [J]. Communications in Mathematical Research, 1996, (01) : 46 - 50
  • [42] Hamiltonian and long cycles in bipartite graphs with connectivity
    Gan, Zhiyong
    Xu, Yanping
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 301 : 49 - 64
  • [43] Decomposition of complete bipartite graphs into paths and cycles
    Jeevadoss, S.
    Muthusamy, A.
    [J]. DISCRETE MATHEMATICS, 2014, 331 : 98 - 108
  • [44] BIPARTITE GRAPHS WITH CYCLES OF ALL EVEN LENGTHS
    SCHMEICHEL, E
    MITCHEM, J
    [J]. JOURNAL OF GRAPH THEORY, 1982, 6 (04) : 429 - 439
  • [45] Bipartite Ramsey Numbers of Cycles for Random Graphs
    Meng Liu
    Yusheng Li
    [J]. Graphs and Combinatorics, 2021, 37 : 2703 - 2711
  • [46] Counting Homomorphic Cycles in Degenerate Graphs
    Gishboliner, Lior
    Levanzov, Yevgeny
    Shapira, Asaf
    Yuster, Raphael
    [J]. PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 417 - 430
  • [47] Counting Homomorphic Cycles in Degenerate Graphs
    Gishboliner, Lior
    Levanzov, Yevgeny
    Shapira, Asaf
    Yuster, Raphael
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (01)
  • [48] Short Directed Cycles in Bipartite Digraphs
    Paul Seymour
    Sophie Spirkl
    [J]. Combinatorica, 2020, 40 : 575 - 599
  • [49] Tools for counting odd cycles in graphs
    Hare, Donovan R.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 139 : 163 - 192
  • [50] Short Directed Cycles in Bipartite Digraphs
    Seymour, Paul
    Spirkl, Sophie
    [J]. COMBINATORICA, 2020, 40 (04) : 575 - 599