Long cycles in unbalanced bipartite graphs

被引:1
|
作者
Chiba, Shuya [1 ]
Fujisawa, Jun [2 ]
Tsugaki, Masao [1 ]
Yamashita, Tomoki [3 ]
机构
[1] Tokyo Univ Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
[2] Keio Univ, Fac Business & Commerce, Yokohama, Kanagawa 2238521, Japan
[3] Kinki Univ, Dept Math, Higashiosaka, Osaka 5778502, Japan
关键词
Bipartite graph; Longest cycle; Degree;
D O I
10.1016/j.disc.2012.02.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G vertical bar X, Y vertical bar be a 2-connected bipartite graph with vertical bar X vertical bar >= vertical bar Y vertical bar. For S subset of V(G), we define delta(S; G) := min{d(G)(nu) : nu is an element of S}. We define sigma(1,1)(G) := min {d(G)(x) + d(G)(y) : x is an element of X, y is an element of Y. xy is not an element of E(G)} and sigma(2)(X) := min{d(G)(x) + d(G)(y) : x, y is an element of X, x not equal y}. We denote by c(G) the length of a longest cycle in G. Jackson [B. Jackson, Long cycles in bipartite graphs, J. Combin. Theory Ser. B 38 (1985) 118-131] proved that c(G) >= min{2 delta(X; G) + 2 delta(Y; G) - 2, 4 delta(X; G) - 4, 2 vertical bar Y vertical bar}. In this paper, we extend this result, and prove that c(G) >= min{2 sigma(1,1)(G) - 2, 2 sigma(2)(X) - 4, 2 vertical bar Y vertical bar}. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1857 / 1862
页数:6
相关论文
共 50 条
  • [1] LONG CYCLES IN BIPARTITE GRAPHS
    JACKSON, B
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (02) : 118 - 131
  • [2] Edge condition for long cycles in bipartite graphs
    Adamus, Lech
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2009, 11 (02): : 25 - 32
  • [3] Edge condition for long cycles in bipartite graphs
    Faculty of Applied Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
    不详
    [J]. Discrete Math. Theor. Comput. Sci., 2009, 2 (25-32): : 25 - 32
  • [4] Hamiltonian and long cycles in bipartite graphs with connectivity
    Gan, Zhiyong
    Xu, Yanping
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 301 : 49 - 64
  • [5] Unbalanced bipartite factorizations of complete bipartite graphs
    Martin, Nigel
    [J]. DISCRETE MATHEMATICS, 2006, 306 (17) : 2084 - 2090
  • [6] Long Cycles in n-Extendable Bipartite Graphs
    Gan, Zhiyong
    Lou, Dingjun
    [J]. ARS COMBINATORIA, 2019, 144 : 91 - 106
  • [7] CYCLES IN BIPARTITE GRAPHS
    JACKSON, B
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 30 (03) : 332 - 342
  • [8] HAMILTONIAN CYCLES IN BIPARTITE GRAPHS
    LU, XY
    [J]. COMBINATORICA, 1995, 15 (02) : 247 - 254
  • [9] Ore and Erdos type conditions for long cycles in balanced bipartite graphs
    Adamus, Janusz
    Adamus, Lech
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2009, 11 (02): : 57 - 69
  • [10] Long monochromatic paths and cycles in 2-colored bipartite graphs
    DeBiasio, Louis
    Krueger, Robert A.
    [J]. DISCRETE MATHEMATICS, 2020, 343 (08)