An algorithm for counting short cycles in bipartite graphs

被引:55
|
作者
Halford, TR [1 ]
Chugg, KM [1 ]
机构
[1] Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA
关键词
bipartite graphs; cycles; girth; graphical models of codes; loops;
D O I
10.1109/TIT.2005.860472
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G = (U boolean OR W, epsilon) be a bipartite graph with disjoint vertex sets U and W, edge set epsilon, and girth g. This correspondence presents an algorithm for counting the number of cycles of length g, g + 2, and g + 4 incident upon every vertex in U boolean OR W. The proposed cycle counting algorithm consists of integer matrix operations and its complexity grows as O(gn(3)) where n. = max(vertical bar U vertical bar, vertical bar W vertical bar).
引用
收藏
页码:287 / 292
页数:6
相关论文
共 50 条
  • [1] Improved Message-Passing Algorithm For Counting Short Cycles in Bipartite Graphs
    Li, Juane
    Lin, Shu
    Abdel-Ghaffar, Khaled
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 416 - 420
  • [2] Counting Short Cycles in Bipartite Graphs: A Fast Technique/Algorithm and a Hardness Result
    Dehghan, Ali
    Banihashemi, Amir H.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (03) : 1378 - 1390
  • [3] Counting short cycles of (c,d)-regular bipartite graphs
    Alinejad, M.
    Khashyarmanesh, K.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (03)
  • [4] COUNTING HAMILTONIAN CYCLES IN BIPARTITE GRAPHS
    Haanpaa, Harri
    Ostergard, Patric R. J.
    [J]. MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 979 - 995
  • [5] Counting Induced 6-Cycles in Bipartite Graphs
    Niu, Jason
    Zola, Jaroslaw
    Sanyuce, Ahmet Erdem
    [J]. 51ST INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2022, 2022,
  • [6] Graphs without short odd cycles are nearly bipartite
    Gyori, E
    Kostochka, AV
    Luczak, T
    [J]. DISCRETE MATHEMATICS, 1997, 163 (1-3) : 279 - 284
  • [7] Maximum bipartite subgraphs in graphs without short cycles
    Lin, Jing
    Zeng, Qinghou
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 311 : 18 - 25
  • [8] CYCLES IN BIPARTITE GRAPHS
    JACKSON, B
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 30 (03) : 332 - 342
  • [9] Novel method for counting short cycles of Tanner graphs
    Jiao X.-P.
    Mu J.-J.
    Zhou L.-H.
    [J]. Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2010, 37 (02): : 311 - 314
  • [10] New algorithm of detecting cycles in bipartite graphs of LDPC codes
    Li, Bo
    Wang, Gang
    Yang, Hong-Juan
    Wei, Min
    [J]. Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2010, 42 (07): : 1051 - 1055