Maximum bipartite subgraphs in graphs without short cycles

被引:0
|
作者
Lin, Jing [1 ]
Zeng, Qinghou [2 ]
机构
[1] Fujian Univ Technol, Sch Comp Sci & Math, Fuzhou 350118, Fujian, Peoples R China
[2] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350003, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Bipartite subgraph; Forbidden cycle; Partition; K-PARTITIONS; BOUNDS; CUTS;
D O I
10.1016/j.dam.2021.12.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph of G. Given a set H of graphs and a positive integer m, let f (m, H ) denote the minimum possible cardinality of f (G), as G ranges over all graphs on m edges that contains no member of H as a subgraph. Suppose that r >= 10 is an even integer and k >= 2 is an integer. In this paper, we prove that there is a constant c(r) > 0 such that f (m, {C6, C7, ... , Cr-1}) >= m/2 + c(r)mr/(r+1) and there is a constant c(k) > 0 such that f (m, {C4, C6, . . . , C2k, C2k+1}) >= m/2 + c(k)m(2k+2)/(2k+3), both of which improve a result of Alon, Bollobas, Krivelevich and Sudakov. (c) 2021 Published by Elsevier B.V.
引用
收藏
页码:18 / 25
页数:8
相关论文
共 50 条
  • [1] APPROXIMATING MAXIMUM SUBGRAPHS WITHOUT SHORT CYCLES
    Kortsarz, Guy
    Langberg, Michael
    Nutov, Zeev
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 255 - 269
  • [2] Approximating Maximum Subgraphs without Short Cycles
    Kortsarz, Guy
    Langberg, Michael
    Nutov, Zeev
    [J]. APPROXIMATION RANDOMIZATION AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2008, 5171 : 118 - +
  • [3] MAXIMUM BIPARTITE SUBGRAPHS OF KNESER GRAPHS
    POLJAK, S
    TUZA, Z
    [J]. GRAPHS AND COMBINATORICS, 1987, 3 (02) : 191 - 199
  • [4] ON RAMSEY GRAPHS WITHOUT BIPARTITE SUBGRAPHS
    NESETRIL, J
    RODL, V
    [J]. DISCRETE MATHEMATICS, 1992, 101 (1-3) : 223 - 229
  • [5] Bipartite subgraphs of graphs with maximum degree three
    Bylka, SA
    Idzik, A
    Komar, J
    [J]. GRAPHS AND COMBINATORICS, 1999, 15 (02) : 129 - 136
  • [6] Graphs without short odd cycles are nearly bipartite
    Gyori, E
    Kostochka, AV
    Luczak, T
    [J]. DISCRETE MATHEMATICS, 1997, 163 (1-3) : 279 - 284
  • [7] Bipartite Subgraphs of Graphs with Maximum Degree Three
    Stanisław Bylka
    Adam Idzik
    Jan Komar
    [J]. Graphs and Combinatorics, 1999, 15 : 129 - 136
  • [8] UNIVERSAL GRAPHS WITHOUT LARGE BIPARTITE SUBGRAPHS
    KOMJATH, P
    PACH, J
    [J]. MATHEMATIKA, 1984, 31 (62) : 282 - 290
  • [9] Maximum bipartite subgraphs in H-free graphs
    Jing Lin
    [J]. Czechoslovak Mathematical Journal, 2022, 72 : 621 - 635
  • [10] EULERIAN SUBGRAPHS IN GRAPHS WITH SHORT CYCLES
    CATLIN, PA
    LAI, HJ
    [J]. ARS COMBINATORIA, 1990, 30 : 177 - 191