Maximum bipartite subgraphs in H-free graphs

被引:0
|
作者
Jing Lin
机构
[1] Fujian University of Technology,School of Computer Science and Mathematics
来源
关键词
bipartite subgraph; -free; partition; 05C35; 05C70;
D O I
暂无
中图分类号
学科分类号
摘要
Given a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph of G. Given a fixed graph H and a positive integer m, let f(m, H) denote the minimum possible cardinality of f(G), as G ranges over all graphs on m edges that contain no copy of H. In this paper we prove that f(m,θk,s)⩾12m+Ω(m(2k+1)/(2k+2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( {m,{\theta _{k,s}}} \right) \geqslant {1 \over 2}m + \Omega \left( {{m^{\left( {2k + 1} \right)/\left( {2k + 2} \right)}}} \right)$$\end{document}, which extends the results of N. Alon, M. Krivelevich, B. Sudakov. Write Kk′ and Kt,s′ for the subdivisions of Kk and Kt,s. We show that f(m,Kk′)⩾12m+Ω(m(5k−8)/(6k−10))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( {m,K_k^\prime } \right) \geqslant {1 \over 2}m + \Omega \left( {{m^{\left( {5k - 8} \right)/\left( {6k - 10} \right)}}} \right)$$\end{document} and f(m,Kt,s′)⩾12m+Ω(m(5t−1)/(6t−2))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( {m,K_{t,s}^\prime } \right) \geqslant {1 \over 2}m + \Omega \left( {{m^{\left( {5t - 1} \right)/\left( {6t - 2} \right)}}} \right)$$\end{document}, improving a result of Q. Zeng, J. Hou. We also give lower bounds on wheel-free graphs. All of these contribute to a conjecture of N. Alon, B. Bollobás, M. Krivelevich, B. Sudakov (2003).
引用
收藏
页码:621 / 635
页数:14
相关论文
共 50 条
  • [1] MAXIMUM BIPARTITE SUBGRAPHS IN H-FREE GRAPHS
    Lin, Jing
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (03) : 621 - 635
  • [2] BIPARTITE SUBGRAPHS OF H-FREE GRAPHS
    Zeng, Qinghou
    Hou, Jianfeng
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (01) : 1 - 13
  • [3] Maximum H-free subgraphs
    Mubayi, Dhruv
    Mukherjee, Sayan
    [J]. JOURNAL OF COMBINATORICS, 2021, 12 (02) : 185 - 214
  • [4] Many cliques in H-free subgraphs of random graphs
    Alon, Noga
    Kostochka, Alexandr
    Shikhelman, Clara
    [J]. JOURNAL OF COMBINATORICS, 2018, 9 (04) : 567 - 597
  • [5] Disjoint paths and connected subgraphs for H-free graphs
    Kern, Walter
    Martin, Barnaby
    Paulusma, Daniel
    Smith, Siani
    van Leeuwen, Erik Jan
    [J]. THEORETICAL COMPUTER SCIENCE, 2022, 898 : 59 - 68
  • [6] Disjoint Paths and Connected Subgraphs for H-Free Graphs
    Kern, Walter
    Martin, Barnaby
    Paulusma, Daniel
    Smith, Siani
    van Leeuwen, Erik Jan
    [J]. COMBINATORIAL ALGORITHMS, IWOCA 2021, 2021, 12757 : 414 - 427
  • [7] Maximum Cuts in H-Free Graphs
    Ma, Huawen
    [J]. GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1503 - 1516
  • [8] On-line coloring of H-free bipartite graphs
    Broersma, H. J.
    Capponi, A.
    Paulusma, D.
    [J]. ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2006, 3998 : 284 - 295
  • [9] Long paths and cycles in random subgraphs of H-free graphs
    Krivelevich, Michael
    Samotij, Wojciech
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [10] Induced Disjoint Paths and Connected Subgraphs for H-Free Graphs
    Barnaby Martin
    Daniël Paulusma
    Siani Smith
    Erik Jan van Leeuwen
    [J]. Algorithmica, 2023, 85 : 2580 - 2604